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ABSTRACT

In audio codec design, often various parameters have to be

fixed which may have a dramatic impact on codec perfor-

mance. In this paper, we report on successful optimization of

a codec based on perceptual criteria. Specifically, the PEAQ

measure is used to determine the audio quality over a set

of test items and search algorithms are used for optimiza-

tion. First, simulated annealing is used for global search, then

Rosenbrock’s method is used to further refine the result. As

shown by an example, the improvements gained by optimiza-

tion compared to an educated guess are substantial.

Index Terms— Audio coding, optimization methods,

simulated annealing

1. INTRODUCTION

In recent work, the authors have proposed delay-free audio

coding schemes based on adaptive differential pulse code

modulation (ADPCM) and various forms of adaptive spectral

shaping of the coding noise [1, 2, 3]. In order to get the best

possible audio quality from each codec and to allow a fair

comparison of the approaches, it is necessary to choose the

various parameters optimally. Unfortunately, this optimum

cannot be derived analytically and an educated guess of the

designer may be far from optimal.

Therefore, an automatic optimization based on two search

methods has been employed which we believe could be fruit-

fully applied in the development of audio codecs in general.

First, simulated annealing is used for global search, then

Rosenbrock’s method is used to further refine the result. Both

methods can adjust to the local problem topology without

requiring explicit computation or estimation of the gradient.

2. THE CODEC AND ITS PARAMETERS

While a detailed description of the coding schemes to be op-

timized is left to [1, 2, 3], we shall give a brief overview of

the ADPCM codec at their core and introduce the parame-

ters to optimize. The noise-shaping techniques are optimized

similarly, so we will limit this paper on the ADPCM part for

brevity’s sake.

The ADPCM encoder starts by subtracting from its in-

put signal a prediction based on past values. The resulting

prediction error is then normalized to unit power and this nor-

malized signal is finally requantized to the desired bit-rate,

typically 3bit or 4bit per sample in our case.

The prediction is computed by an adaptive linear filter.

Its filter order and the step size of the gradient based adapta-

tion have to be specified. If the filter order is too low, the

achievable prediction gain is insufficient, if the filter order

is too high, the adaptation is slowed down and the predic-

tor’s tracking capabilities are reduced. Typically 2-digit val-

ues present a good compromise between steady-state perfor-

mance and adaptation speed. The same trade-off is necessary

for adaptation step-size; additionally, stability concerns pose

a theoretical upper bound of 2 for the prediction scheme we

use. Typical values lie well below 0.1, however.

For power normalization of the prediction error, the power

is estimated by filtering squared past samples with a recursive

first-order low-pass. The low-pass switches between two co-

efficients, depending on whether the power is increasing or

decreasing, both of which lie between 0 and 1. Usually, the

coefficient used for decreasing power is the lower one, result-

ing in a slower adaptation. A further parameter to choose is a

lower bound for the estimated power to avoid excessive am-

plification which would result in quantizer overload at signal

onsets. As this lower bound also limits the codec’s dynamic

range, a value of about 2×10−10 corresponding to −96dB

seems reasonable.

Finally, the quantizer levels used when requantizing to the

desired bit-rate need to be determined. While the Lloyd-Max-

algorithm in principle allows designing a minimum distortion

quantizer [5, 6], it requires the input signal’s probability dis-

tribution. Not only is the probability distribution unknown,

but due to the backwards adaption of the codec, it depends

on the codec parameters including the quantizer levels them-

selves. Nevertheless, the minimum distortion quantizer for a

Gaussian distribution may serve as a suitable starting point.

The only restriction enforced upon the quantizer is symmetry,

primarily to reduce the number of parameters to optimize.

The parameters of the codec, together with typical val-

ues obtained in manual trials during codec development, are

summarized in table 1. The total number of parameters is 9
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parameter range typical values

prediction filter order positive

integer

30 to 100

predictor step-size 0 to 2 10−5 to 10−1

power estimation filter

coefficients

0 to 1 0.01 to 0.1

power lower bound 0 to 1 2×10−10

positive quantizer levels positive

reals

distributed between

0 and 3 with higher

density for lower

values

Table 1. The parameters to optimize and typical values ob-

tained from manual trials.

for quantization to 3bit per sample and 13 for 4bit per sam-

ple due to the higher number of quantizer levels to determine.

This dimensionality of the parameter space is moderate so

that optimization should be feasible despite the complicated

cost function we will use.

3. OBJECTIVE PERCEPTUAL EVALUATION

Intuitively, the aim of the parameter optimization can be

simply put: Achieve the best possible audio quality over a

range of representative test items. As test items, the Euro-

pean Broadcasting Union (EBU) Sound Quality Assessment

Material (SQAM) is appropriate as it was created just for the

purpose of quality assessment and is often used when evalu-

ating audio codecs. The choice of a suitable quality measure

needs more attention.

Instead of performing listening tests for every iteration of

an optimization procedure, an algorithmic evaluation is re-

quired that is able to approximate the results of a real listening

test. Such an algorithm is defined in [4], commonly referred

to as PEAQ, perceptual evaluation of audio quality. Interest-

ingly, the aim of the standard is not only to allow objective

comparison of codecs based on perceptual criteria, but also to

support codec development — however, no prior attempts at

automatic optimization based on this measure are reported.

The PEAQ algorithm requires the original reference sig-

nal and the test signal after coding and decoding and yields

the objective difference grade (ODG), a value between −4

(very annoying differences) and 0 (no differences percepti-

ble). Applying the PEAQ algorithm to all 70 SQAM items

after coding and decoding using some parameter vector χχχ , 70

individual ODGs Kn(χχχ) are obtained. To be usable as a cost

function for optimization, these must be reduced to a single

value.

Simple averaging is insufficient, as the result of an opti-

mization may then be a codec with excellent performance for

most items, but very poor results for a few items, severely

limiting its general applicability. Using the worst individual

result as cost function is also inappropriate: With no changes

to the worst item, possible improvements to others would be

ignored. As a compromise, the fourth powers may be aver-

aged, yielding the cost function

K(χχχ) =
70

∑
n=1

K4
n (χχχ) (1)

which puts strong emphasis on worse signals without com-

pletely neglecting better ones.

The down-sides of using the ODG as a quality measure

are high computational demands and a non-continuous cost

function. Depending on the predictor order used in the codec,

the process of encoding, decoding and calculating the ODG

for all 70 items takes more then 20 minutes on current PC

hardware. Therefore, an optimization technique is required

which uses as few cost function evaluations as possible.

Unfortunately, due to the non-continuity of the cost func-

tion, no gradient is available for optimization. This prohibits

the application of most commonly used non-linear optimiza-

tion algorithms. The best alternative are search type algo-

rithms that use the information gained from cost function

evaluations in past iterations to decide on the best parameter

set to be used for the next evaluation.

4. GLOBAL SEARCH WITH SIMULATED
ANNEALING

The first search algorithm we apply is simulated annealing,

originally proposed for discrete optimization [7, 8], which

models an annealing melt, going from a hot chaotic state to a

energetically near optimal crystalline structure. Starting from

a parameter vector χχχ i in the i-th iteration, a new candidate

vector χ̃χχ i is obtained by applying a small random modifica-

tion to χχχ i. The candidate vector becomes the next χχχ i+1 if

K(χ̃χχ i)≤K(χχχ i) or if a random experiment succeeds, the prob-

ability of which decreases with increasing K(χ̃χχ i)− K(χχχ i);
otherwise, χχχ i+1 = χχχ i is retained.

Specifically, if K(χ̃χχ i) > K(χχχ i), K(χ̃χχ i) is accepted with

probability

Pi = exp

(
−K(χ̃χχ i)−K(χχχ i)

Ti

)
, (2)

where the temperature Ti controls the overall acceptance

probability and is reduced during the optimization. In the

beginning, almost all variations are accepted resulting in a

global search without getting trapped in a local minimum,

while later, variations leading to an improvement are pre-

ferred, guiding the search to the minimum.

In practice, the random experiment to determine accep-

tance is drawing a random number ri uniformly distributed

over [0,1] and accepting χ̃χχ i if ri ≤ Pi. This allows to first de-

termine ri and then solve equation (2) for the maximum

Kmax,i = K(χχχ i)−Ti logri (3)
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allowed for acceptance of χ̃χχ i. This may be used to reduce the

computational demands when evaluating the cost function, as

evaluating the sum in equation (1) may be terminated as soon

as Kmax,i is exceeded, so that for a rejected χ̃χχ i, typically only

a subset of the Kn(χ̃χχ i) have to be computed. By evaluating

those Kn(χ̃χχ i) first for which the highest values may be ex-

pected from the results of previous iterations, the benefit is

maximized.

For discrete problems, the variation of χχχ i to obtain χ̃χχ i usu-

ally is simply taking a discrete step of one or more randomly

chosen variables. For continuous problems, more elaborate

schemes are possible [9] to take into account the significant

differences in typical value ranges of the various codec pa-

rameters and the complicated mutual dependencies. This is

done by using an additive variation

χ̃χχ i = χχχ i +ΔΔΔi, (4)

where the random vector ΔΔΔi is chosen to have zero mean and

obey a covariance SSSi. The trick is to use the covariance of

past χχχ i, as these automatically carry information about the lo-

cal topology of the cost function. We use an exponentially

weighted covariance estimation with simple recursive com-

putation via

μμμ i = (1−λ )χχχ i +λ μμμ i−1 (5)

SSSi =
1−λ 2

2λ 2
(χχχ i−μμμ i)(χχχ i−μμμ i)

T +λSSSi−1, (6)

where good results where achieved with λ = 0.95.

The last design choice is the cooling scheme by which

Ti is decreased. Cooling too quickly will result in premature

convergence to a local minimum, while cooling too slowly

will dramatically increase run-time. As a compromise, we

choose

Ti+1 =

{
0.95 ·Ti if χ̃χχ i is accepted

Ti else.
(7)

Although this scheme is far from guaranteeing convergence to

the global optimum, in practice, the solutions we could obtain

in acceptable time are very good.

5. LOCAL SEARCH WITH ROSENBROCK’S
METHOD

While simulated annealing is well suited for globally explor-

ing the parameter space with closer examination of regions

with better performance, its final convergence to a local min-

imum is relatively slow. We therefore stop the global search

when no significant changes have occurred for some time and

turn to a local search algorithm.

The local search method we use has been proposed by

Rosenbrock [10]. The algorithm is organized in rounds,

where in each round, optimization is performed by searching

along orthonormal basis vectors of the parameter space. After

parameter initial

value

final value

prediction filter order 64 59

predictor step-size 5×10−3 6.79110×10−3

power estimation filter

coefficients

0.1 and

0.03

0.0934223 and

0.0498812

power lower bound 2×10−10 9.38334×10−11

positive quantizer levels 0.2451,

0.7560,

1.3440,

2.1520

0.195498,

0.763898,

1.48229,

2.98078

Table 2. Initial and final values of the optimization.

each round, these orthonormal vectors are adapted based on

the complete step taken in the round.

Specifically, let uuum denote the orthonormal basis vectors

and km associated step sizes. Then, iterating over the uuum,

new candidate parameter vectors χ̃χχ i = χχχ i + kmuuum are con-

structed and accepted as χχχ i+1 = χ̃χχ i if K(χ̃χχ i) ≤ K(χχχ i), other-

wise χχχ i+1 = χχχ i. If χ̃χχ i is accepted, the respective step size km is

increased by some factor α > 1, otherwise, it is decreased and

reversed with some other factor −1 < β < 0 (we use α = 5

and β =−0.5). The round continues until for each uuum, at least

one χ̃χχ i has been accepted and at least one has been rejected.

After each round, a new set of basis vectors is determined.

First, from the total step ΔΔΔ taken in the whole round, a set of

helper vectors

qqqm = ΔΔΔ−
m−1

∑
n=1

ΔΔΔT uuunuuun (8)

is computed such that qqq1 = ΔΔΔ is equal to the whole step, qqq2

does not contain the part in direction uuu1, qqq3 does not contain

the parts in directions uuu1 and uuu2, and so on. From these qqqm,

the new uuum used in the next round are determined by Gram-

Schmidt-orthogonalization and normalization.

6. RESULTS

To demonstrate the performance of the optimization, we show

the behavior for optimizing the ADPCM system with quan-

tization to 3bit per sample. We start with the initial val-

ues given in table 2, which are a reasonable educated guess.

The covariance matrix of the simulated annealing search is

initialized to a diagonal matrix containing one hundredth of

the square root of the respective parameter’s initial values.

Hence, in the beginning the different parameters are modified

independently with an average step size proportional to their

value. The temperature is initialized to T0 = 1680.

The course of the cost function over the iterations of the

simulated annealing search is depicted in figure 1. It is clearly

visible how at first, almost arbitrary deteriorations may occur,

while later on, only small increases of the cost functions are
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Fig. 1. Cost function versus iteration for simulated annealing.
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Fig. 2. Cost function versus iteration for Rosenbrock’s

method.

allowed, leading to an overall downwards trend. The simu-

lated annealing search is terminated after 197 iterations. The

cost function is reduced from K(χχχ0) = 2184 to K(χχχ197) =
394, a clear improvement.

For initializing the Rosenbrock search, the overall best so-

lution during the simulated annealing which occurs already

after the 54th iteration with K(χχχ54) = 386 is used instead of

the final one. The orthonormal basis vector are initialized to

the unit vectors, the step sizes are chosen as one thousandth

of the respective parameter values.

The resulting cost function course is depicted in figure 2.

In only 30 iterations, the cost function is further reduced to

370. Here, a local minimum is reached, so that no further

reductions occur.

The final parameter values found are also listed in table 2.

The largest deviation from the initial values can be observed

for the quantization levels, while the changes of the other pa-

rameters seem almost insignificant. Nevertheless, an impres-

sive improvement in audio quality, as reflected by the cost

function, is achieved.

7. CONCLUSION

We have presented an optimization approach for codec pa-

rameter selection based on perceptual criteria. As evaluat-

ing the cost function for perceptual evaluation is expensive,

search methods that save on the number of required evalua-

tions are employed, namely simulated annealing and Rosen-

brock’s method. While the former is well-suited for global

search, the latter has better local convergence properties. The

improvements gained compared to an educated guess of the

codec parameters are substantial.
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