
Implementing Communications Systems on an SDR SoC

John Glossner1, Daniel Iancu1, Mayan Moudgill1, Sanjay Jinturkar1, Gary Nacer1, Stuart
Stanley1, Andrei Iancu1, Hua Ye1, Michael Schulte1,3, Mihai Sima1,2, Tomas Palenik5,

Peter Farkas1,5, and Jarmo Takala1,4

1Sandbridge Technologies
1 North Lexington Ave.

White Plains, NY 10601 USA
glossner@SandbridgeTech.com

2Univ. Victoria
British

Columbia
CANADA

3UW Madison
Madison

Wisconsin
USA

4Tampere Univ.
of Technology

Tampere
FINLAND

5Slovak Univ.
of Technology

Bratislava
SLOVAKIA

ABSTRACT

Software Defined Radios (SDRs) offer a programmable
and dynamically reconfigurable method of reusing
hardware to implement the physical layer processing of
multiple communications systems. An SDR can
dynamically change protocols and update communications
systems over the air as a service provider allows. In this
paper we present techniques for implementing
communications systems in software. We describe briefly
the SB3011 platform and programming environment. We
then present a number of useful techniques that can be used
to implement working systems. We further describe in
which systems these techniques are implemented.

Index Terms— Software Defined Radio (SDR),
Multithreaded Processor, Digital Signal Processor
(DSP), Multicore, Communications Systems

1. INTRODUCTION
Historically, processor-based Software Defined Radios
(SDRs) have not had enough performance to implement
modern communications systems. Digital Signal
Processors (DSPs) are now capable of executing many
billions of operations per second at power efficiency levels
appropriate for handset deployment. This has brought
Software Defined Radio (SDR) to prominence.

To enable physical layer processing in software,
processors should support many levels of parallelism. Since
many algorithms have stringent requirements on response
time, multithreading is an integral technique in reducing
latencies. In the Sandbridge SB3011 processor design [1]
thread-level parallelism is supported by providing hardware
for up to 8 independent programs to be simultaneously
active on a single Sandblaster core. This approach hides the
latency in physical layer processing.

In addition to thread-level parallelism, the processor
also supports data-level parallelism through the use of a
vector unit. In the inner kernel of signal processing or
baseband routines, the computations appear as vector
operations of moderate length. Filters, FFTs, correlations,

etc., all can be specified in this manner. Efficient, low
power support for data level parallelism effectively
accelerates inner loop signal processing.

To accelerate control code, the processor supports
issuing multiple operations per cycle. Since control code
often limits overall program speed-up due to Amdahl’s
Law, it is helpful to allow control code and vector code to
execute simultaneously. This is provided through a
compound instruction set and multithreaded organization.
The Sandblaster core provides instruction level parallelism
by allowing multiple operations to issue in parallel. For
example, a branch, an integer, and a vector operation may
all issue simultaneously [2]. In addition, many compound
operations are specified within an instruction class such as
load with update, and branch with compare.

Obtaining full utilization of multiprocessor resources
has historically been a difficult challenge. Much of the
programming effort can be spent determining which
processors should receive data from other processors.
Execution cycles are often wasted for data transfers.
Statically scheduled machines such as Very Long
Instruction Word architectures and visible pipeline
machines with wide execution resources complicate
programmer productivity by requiring manual tracking of
up to 100 in-flight instruction dependencies. When non-
associative DSP arithmetic is present, nearly all compilers
are ineffective and the resulting burden falls upon the
assembly language programmer. A number of these issues
have been discussed in [1].

With concurrent multithreaded hardware and a
multithreaded software programming model, it is possible
for a kernel to be developed that automatically schedules
software threads onto hardware threads. It should be noted
that while the hardware scheduling may be fixed, the
software should be free to use any scheduling policy
desired. The POSIX pthreads open standard provides cross
platform capability as the library is compilable across a
number of systems including Unix, Linux, and Windows
[2].

The Sandbridge approach includes a complete
parallelizing tool chain which removes the need for tedious
DSP assembly language programming The compiler

53801-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

automatically vectorizes data parallel operations and can
even vectorize non-associative fixed-point (saturating)
datatypes. The compiler is also able to automatically
generate threads for the processor [3]. Furthermore, ultra-
fast simulation, profiling, and debugging of code that is
embodied in the Sandblaster development environment is a
key enabler of fast application development.

With a tool chain capable of automatically generating
parallel DSP code and a high-performance low-power chip
fully functional, the physical layers of multiple
communications protocols such as WCDMA, GSM/GPRS,
1xEVDO, TD-SCDMA, NTSC Video Decode, WiMax,
WiFi, GPS, AM/FM radio, DVB, and SINCGARS have
been implemented. Real-time response has been achieved
and the effectiveness of our approach has been validated.

In the process of implementing these systems, a
number of techniques have been developed for both low
power optimization and efficient execution. Real-time
constraints add another level of complexity. The remainder
of this paper discusses the techniques and optimizations
used.

2. PROGRAMMING TECHNIQUES

Rather than designing custom blocks for every function in
the communication system, a small and power efficient
core can be highly optimized and replicated to provide a
platform for broadband communications - an SDR
processor capable of executing operations appropriate to
broadband communications. This approach scales well with
semiconductor generations and allows flexibility in
configuring the system for future specifications and any
field modifications that may be necessary.

2.1. General Programming
The Sandblaster processor provides access to a fixed
number of threads. These threads are called hardware
threads or contexts. However, an application (written in C)
can contain a virtually unlimited number of POSIX threads
(pthreads also called software threads), which are
scheduled on the hardware threads by the real-time
operating system (RTOS).

The Sandblaster programming interface provides the
ability to create, destroy, and join the threads through the
common include library <pthreads.h>. This open
mechanism is completely portable across multiple
processors and compilers. In fact, the compiler uses the
exact same pthreads mechanism when automatically
generating threads. The underlying operating system
supports the inherent pthreads schedule model to prioritize
and schedule threads. The interface also models a number
of peripherals include A/D and D/A converters, General
Purpose IO (GPIO), and control peripherals. The RTOS has
been kept lightweight to reduce overhead.

2.2. Coding Guidelines
We have previously published coding guidelines that

allow our compiler to take advantage of parallel resources
[4]. Most of these guidelines are generic in the sense that if
followed, compilation on other platforms (e.g. x86) should
be improved. All are high-level language practices. The
most salient points are summarized:

Minimize the use of malloc().
Pass arrays explicitly and not enclosed within structures
Use arrays of shorts as the widest vector datatype in the
Sandblaster processor is 16-bits. The tools will also
vectorize 32-bit vectors but only half as many execute
in parallel.

Use floating point only when necessary as it is
emulated.

Avoid unrolling loops manually as the compiler can do
it more efficiently.

3. COMMUNICATION SYSTEMS

In designing communications systems there are often
multiple algorithms that may be used in an implementation.
Some algorithms provide better system performance and
higher computational cost, while other techniques may
involve simply changing the implementation of a
component. In this section we describe some of the more
interesting techniques used in our system.

3.1. Time Domain versus Frequency Domain
In the implementation of a GPS receiver we found that a
time domain technique could be used very effectively,
rather than a frequency domain technique used by many
hardware implementations [5]. The key equation is
Equation (1).

In Equation (1), we desire to minimize the detection
error for a particular satellite i. Therefore, we force the two
conditions 0iff and 0i implying a correction for
the Doppler shift as well as for the phase shift for each
satellite. Conforming to the Fourier transform shifting
property, the condition 0iff can be achieved either
through frequency or time domain shifting.

In hardware implementations, the carrier is tracked by
advancing or retarding the Local Oscillator (LO) frequency
and phase (frequency domain shift) conforming to the
output of a Phase Locked Loop (PLL) circuit. For each
visible satellite the integral defined in Equation (1) is
calculated separately resulting in multiple parallel
processes with each process executed by a separate

(1)

2
sin)(cos(),(

)(

1

0

1

0

'1

0

s

ss

N

i
i

N

i

iiiii
N

i

E

jffnnkD
dtt

5381

dedicated hardware block called a channel. Each channel
must have its own LO, PLL and Pseudo Number (PN)
generator.

A software implementation may be more efficiently
implemented in the time domain. The sampled data is time
domain shifted by pointer manipulation; the pointer is
shifted forward or retarded depending on the direction of
the Doppler shift. The LO in this case is a sin-cosine table.
Even though each satellite has a different carrier frequency
due to different Doppler shifts, the table is the same for all
satellites. The phase condition is achieved by a digital
(software) PLL, resulting in an additional shift for each
carrier on the already shifted data. The PN sequences are
stored in memory.

With a multithreaded processor, all the integrals in (1)
are executed in parallel. The number of virtual channels is
dynamically allocated by the processor, depending on the
available resources and real time criteria.

Hardware implementations can easily implement the
condition 0iff with a Voltage Controlled Oscillator
(VCO) used for LO. In software, the frequency condition
cannot be exactly achieved due to a limited sampling rate.
Shifting in the time domain will also induce spurious
frequencies which will increase the detection error. To
reduce detection errors, over-sampling is required.

BAND PASS FILTER

AGC

AFC

To VGA

To Frequency Synthesizer

BPF To D/A

c f
From A/D

Figure 1.Software Blocks for AM Receiver

3.2. Software Generated Control Signals
Figure 1 shows the blocks that were implemented in
software for an Amplitude Modulated (AM) receiver [7].
The eight times over-sampled signal from the A/D is first
filtered using a second order IIR band-pass filter, centered
at the carrier frequency, with 3 dB attenuation bandwidth
of 5 KHz. The filtered signal is then multiplied with the
cosine of the sampled signal fc and integrated over eight
samples. After integration, the data goes through 1:16
decimation, filtering using a 96 tap 80dB FIR band-pass
filter, rescaling, and DC removal. Finally, the data is sent to
the D/A. The automatic frequency control (AFC) and the
automatic gain control (AGC) functions are also
implemented in software. The coefficients for the filters are
pre-computed and stored in nonvolatile memory for each
carrier in the AM frequency band. This is a new algorithm
for implementing an AM radio. Using control signals

generated by software, we are able to control the
demodulation of AM signals using significantly less
complex operations than otherwise achievable.

3.3. Using Lookup Tables
Converting cycle intensive divisions and trigonometric
functions into lookup tables is a technique used in our DVB
receiver. One important function in communications is
receiver synchronization. There is always a difference
between the carrier frequency and the Local Oscillator due
to reference frequency lack of precision. Minimizing the
difference is the goal of frequency de-rotation. The de-
rotation function is described by the following equation:

sss nTwjnTwjnTwwj eee .)(.

where Ts is the sampling frequency and is the frequency
error.

Conforming to the previous equation, the error is
cancelled by multiplying the incoming sampled waveform
with a locally generated sequence of frequencies ,
usually stored in memory. However when memory size and
access time are an issue, the LUT can be replaced by
computations using the following approximation:

)cos()sin()sin(and
)sin()cos()cos(. In both cases

the error is supplied by the PLL or Frequency Lock
Loop (FLL) block.

3.4. Using Mathematical Manipulations for
Parallelization
In most communication systems the base band processing
requires both I and Q orthogonal sequences. In the
following we show that through mathematical
manipulations it is possible to use only one input sequence,
either I or Q, resulting in HW simplification without
significant increase in computational complexity.

We assume an OFDM communication system such as
DVB-T/H for example. The Fourier transform of the base
band signals, IBB and QBB yields

Where c*
0,0,k is the complex amplitude of the kth carrier, nT

is replaced by n, W-nk=e-j2 nk/M and M represents the
number of samples in one symbol time interval less the
guard time. Equation (2) is the most common approach for
further base band processing. Another approach uses only
sequence I (or Q): Suppose I (1) (t) and I (2) (t) are two
consecutive symbols.

nk
M

k
BBBBk WnjQnIc

1

0
,0,0][][(2)

5382

where)(,0,0 nTk is described in [9] and is the Dirac
function.
The complex Fourier transform of the two real symbols can
be written as:

From Equation (3), the two symbols are

Both approaches have the same final result from a
mathematical point of view, except for a scaling factor.

3.5. Using Min Sum in LDPC Codes
Low-density parity-check (LDPC) codes are linear block
codes with the parity-check matrix containing only a few
ones compared to the number of zeros. The performance of
the LDPC codes comes very close to the Shannon limit for
most of the different propagation channels. Until recently
the implementation of the LDPC codes was prohibitive
because of the computational complexity.

The block sructure of the parity check matrix,
specified in IEEE Std. 802.16e, and the organization of
these blocks in tiers are suitable for multithreaded decoder
implementation. The nonzero blocks are only rotated
versions of the identity matrix while the degree of the
columns inside each tier is either one or zero. This structure
will allow multiple threads to access independently the
extrinsic information of the variable nodes. The decoding
algorithm consists of horizontal update (or check function
evaluations) and vertical update (summations). Because the
matrix is sparse, it would be very inefficient to store the
extrinsic information of variable nodes in a simple 2D array
of size at most 1152 x 2304. Instead, only the nonzero
elements are stored. This cuts down the necessary number
of rows to the number of ones in any column (at most 6 for
the proposed WiMax LDPC). This way, the necessary
memory space will only be (6+1) x 2304 x 2 = 32 kB. The
extra row is necessary to keep track of the correct vertical
index of the processed values. If handled properly, the

compressed storage of variable nodes values doesn’t
prohibit multithreaded processing.

4. CONCLUSIONS

We have described a number of SDR techniques for
implemented communications algorithms in software.
These techniques range in scope from simple high level
coding guidelines to sophisticated software resampling
techniques that reduce hardware component counts. The
ability to dynamically select communications system
components provides the flexibility to reduce the
computational burden (i.e. power) if the system parameters
permit.

5. REFERENCES
[1] J. Glossner, M. Schulte, M. Moudgill, D. Iancu, S. Jinturkar,

T. Raja, G. Nacer, and S. Vassiliadis, “Sandblaster Low-
Power Multithreaded SDR Baseband Processor”,
Proceedings of the 3rd Workshop on Applications Specific
Processors (WASP’04), pp. 53-58, Stockholm, Sweden,
September 7th, 2004.

[2] B. Nichols, D. Buttlar, and J. Farrell, Pthreads Programming:
A POSIX Standard for Better Multiprocessing, O’Reilly
Nutshell Series, Sebastopol, CA, September, 1996.

[3] S. Jinturkar, J. Glossner, V. Kotlyar, and M. Moudgill, “The
Sandblaster Automatic Multithreaded Vectorizing
Compiler”, Proceedings of the 2004 Global Signal
Processing Expo (GSPx) and International Signal Processing
Conference (ISPC), Santa Clara, California, September 27-
30, 2004.

[4] S. Jinturkar, J. Glossner, E. Hokenek, and M. Moudgill,
“Programming the Sandbridge Multithreaded Processor”,
Proceeding of the 2003 Global Signal Processing Expo
(GSPx) and International Signal Processing Conference
(ISPC), March 31-April 3, 2003, Dallas, Texas.

[5] J. Glossner, D. Iancu, V. Kotylar, H. Ye, E. Hokenek, and M.
Moudgill, “Software Defined Global Positioning Satellite
Receiver”, Proceedings of Software Defined Radio Technical
Forum, pp. HW-2-001, 1-5, Orlando, Florida, November
2003.

[6] D. Iancu, J. Glossner, H. Ye, M. Moudgill, and V. Kotlyar,
“Rake Receiver Enhanced GPS System”, Proceedings of
Software Defined Radio Technical Forum, Volume A, pp.
97-105, 16-18 November, 2004, Scottsdale, Arizona.

[7] D. Iancu, J. Glossner, H. Ye, Y. Abdelilah, and S. Stanley,
“Reduced Complexity Software AM Radio”, Proceedings of
the Symposium Trends in Communications (SympoTIC ’03),
pp. 122-125, Bratislava, SLOVAKIA, 26 – 28 October 2003.

[8] J. Glossner, D. Iancu, G. Nacer, S. Stanley, E. Hokenek, and
M. Moudgill, “Multiple Communication Protocols for
Software Defined Radio”, IEE Colloquium on DSP Enable
Radio, pp. 227-236, September 22-23, 2003, ISIL,
Livingston, Scotland.

[9] TBD.

1

0
,0,0,0,0

)1()1()()()(
max

min

N

n

K

Kk
kk nTtnTctI

1

0
,0,0,0,0

)2()2()()()(
max

min

N

n

K

Kk
kk nTtnTctI

][][][][
1

0

)2()1(kjBkAWnjInI nk
M

k

 (3)

][][
2

][][
2
1

,0,0
)1(*

kMBkB
j

kMAkAc k (4)

][][
2

][][
2
1

,0,0
)2(*

kMAkAjkMBkBc k (5)

5383

