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ABSTRACT 

Software Defined Radios (SDRs) offer a programmable 
and dynamically reconfigurable method of reusing 
hardware to implement the physical layer processing of 
multiple communications systems. An SDR can 
dynamically change protocols and update communications 
systems over the air as a service provider allows. In this 
paper we present techniques for implementing 
communications systems in software. We describe briefly 
the SB3011 platform and programming environment. We 
then present a number of useful techniques that can be used 
to implement working systems. We further describe in 
which systems these techniques are implemented.  

Index Terms— Software Defined Radio (SDR), 
Multithreaded Processor, Digital Signal Processor 
(DSP), Multicore,  Communications Systems

1. INTRODUCTION
Historically, processor-based Software Defined Radios 
(SDRs) have not had enough performance to implement 
modern communications systems.  Digital Signal 
Processors (DSPs) are now capable of executing many 
billions of operations per second at power efficiency levels 
appropriate for handset deployment. This has brought 
Software Defined Radio (SDR) to prominence.  

To enable physical layer processing in software, 
processors should support many levels of parallelism. Since 
many algorithms have stringent requirements on response 
time, multithreading is an integral technique in reducing 
latencies. In the Sandbridge SB3011 processor design [1] 
thread-level parallelism is supported by providing hardware 
for up to 8 independent programs to be simultaneously 
active on a single Sandblaster core. This approach hides the 
latency in physical layer processing.  

In addition to thread-level parallelism, the processor 
also supports data-level parallelism through the use of a 
vector unit. In the inner kernel of signal processing or 
baseband routines, the computations appear as vector 
operations of moderate length. Filters, FFTs, correlations, 

etc., all can be specified in this manner. Efficient, low 
power support for data level parallelism effectively 
accelerates inner loop signal processing. 

To accelerate control code, the processor supports 
issuing multiple operations per cycle. Since control code 
often limits overall program speed-up due to Amdahl’s 
Law, it is helpful to allow control code and vector code to 
execute simultaneously. This is provided through a 
compound instruction set and multithreaded organization. 
The Sandblaster core provides instruction level parallelism 
by allowing multiple operations to issue in parallel. For 
example, a branch, an integer, and a vector operation may 
all issue simultaneously [2]. In addition, many compound 
operations are specified within an instruction class such as 
load with update, and branch with compare.  

Obtaining full utilization of multiprocessor resources 
has historically been a difficult challenge. Much of the 
programming effort can be spent determining which 
processors should receive data from other processors. 
Execution cycles are often wasted for data transfers. 
Statically scheduled machines such as Very Long 
Instruction Word architectures and visible pipeline 
machines with wide execution resources complicate 
programmer productivity by requiring manual tracking of 
up to 100 in-flight instruction dependencies. When non-
associative DSP arithmetic is present, nearly all compilers 
are ineffective and the resulting burden falls upon the 
assembly language programmer. A number of these issues 
have been discussed in [1]. 

With concurrent multithreaded hardware and a 
multithreaded software programming model, it is possible 
for a kernel to be developed that automatically schedules 
software threads onto hardware threads. It should be noted 
that while the hardware scheduling may be fixed, the 
software should be free to use any scheduling policy 
desired. The POSIX pthreads open standard provides cross 
platform capability as the library is compilable across a 
number of systems including Unix, Linux, and Windows 
[2]. 

The Sandbridge approach includes a complete 
parallelizing tool chain which removes the need for tedious 
DSP assembly language programming The compiler 
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automatically vectorizes data parallel operations and can 
even vectorize non-associative fixed-point (saturating) 
datatypes. The compiler is also able to automatically 
generate threads for the processor [3]. Furthermore, ultra-
fast simulation, profiling, and debugging of code that is 
embodied in the Sandblaster development environment is a 
key enabler of fast application development. 

With a tool chain capable of automatically generating 
parallel DSP code and a high-performance low-power chip 
fully functional, the physical layers of multiple 
communications protocols such as WCDMA, GSM/GPRS, 
1xEVDO, TD-SCDMA, NTSC Video Decode, WiMax, 
WiFi, GPS, AM/FM radio, DVB, and SINCGARS have 
been implemented. Real-time response has been achieved 
and the effectiveness of our approach has been validated. 

In the process of implementing these systems, a 
number of techniques have been developed for both low 
power optimization and efficient execution. Real-time 
constraints add another level of complexity. The remainder 
of this paper discusses the techniques and optimizations 
used.  

2. PROGRAMMING TECHNIQUES 

Rather than designing custom blocks for every function in 
the communication system, a small and power efficient 
core can be highly optimized and replicated to provide a 
platform for broadband communications - an SDR 
processor capable of executing operations appropriate to 
broadband communications. This approach scales well with 
semiconductor generations and allows flexibility in 
configuring the system for future specifications and any 
field modifications that may be necessary. 

2.1. General Programming 
The Sandblaster processor provides access to a fixed 
number of threads. These threads are called hardware 
threads or contexts. However, an application (written in C) 
can contain a virtually unlimited number of POSIX threads 
(pthreads also called software threads), which are 
scheduled on the hardware threads by the real-time 
operating system (RTOS).  

The Sandblaster programming interface provides the 
ability to create, destroy, and join the threads through the 
common include library <pthreads.h>. This open 
mechanism is completely portable across multiple 
processors and compilers. In fact, the compiler uses the 
exact same pthreads mechanism when automatically 
generating threads. The underlying operating system 
supports the inherent pthreads schedule model to prioritize 
and schedule threads. The interface also models a number 
of peripherals include A/D and D/A converters, General 
Purpose IO (GPIO), and control peripherals. The RTOS has 
been kept lightweight to reduce overhead. 

2.2. Coding Guidelines 
We have previously published coding guidelines that 

allow our compiler to take advantage of parallel resources 
[4]. Most of these guidelines are generic in the sense that if 
followed, compilation on other platforms (e.g. x86) should 
be improved. All are high-level language practices.  The 
most salient points are summarized: 

Minimize the use of malloc(). 
Pass arrays explicitly and not enclosed within structures 
Use arrays of shorts as the widest vector datatype in the 
Sandblaster processor is 16-bits. The tools will also 
vectorize 32-bit vectors but only half as many execute 
in parallel. 

Use floating point only when necessary as it is 
emulated. 

Avoid unrolling loops manually as the compiler can do 
it more efficiently. 

3. COMMUNICATION SYSTEMS 

In designing communications systems there are often 
multiple algorithms that may be used in an implementation. 
Some algorithms provide better system performance and 
higher computational cost, while other techniques may 
involve simply changing the implementation of a 
component. In this section we describe some of the more 
interesting techniques used in our system. 

3.1. Time Domain versus Frequency Domain 
In the implementation of a GPS receiver we found that a 
time domain technique could be used very effectively, 
rather than a frequency domain technique used by many 
hardware implementations [5]. The key equation is 
Equation (1). 

In Equation (1), we desire to minimize the detection 
error for a particular satellite i. Therefore, we force the two 
conditions 0iff and 0i  implying a correction for 
the Doppler shift as well as for the phase shift for each 
satellite. Conforming to the Fourier transform shifting 
property, the condition 0iff  can be achieved either 
through frequency or time domain shifting.   

In hardware implementations, the carrier is tracked by 
advancing or retarding the Local Oscillator (LO) frequency 
and phase (frequency domain shift) conforming to the 
output of a Phase Locked Loop (PLL) circuit. For each 
visible satellite the integral defined in Equation (1) is 
calculated separately resulting in multiple parallel 
processes with each process executed by a separate 
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dedicated hardware block called a channel. Each channel 
must have its own LO, PLL and Pseudo Number (PN) 
generator.   

A software implementation may be more efficiently 
implemented in the time domain. The sampled data is time 
domain shifted by pointer manipulation; the pointer is 
shifted forward or retarded depending on the direction of 
the Doppler shift. The LO in this case is a sin-cosine table. 
Even though each satellite has a different carrier frequency 
due to different Doppler shifts, the table is the same for all 
satellites. The phase condition is achieved by a digital 
(software) PLL, resulting in an additional shift for each 
carrier on the already shifted data. The PN sequences are 
stored in memory. 

With a multithreaded processor, all the integrals in (1) 
are executed in parallel. The number of virtual channels is 
dynamically allocated by the processor, depending on the 
available resources and real time criteria. 

Hardware implementations can easily implement the 
condition 0iff  with a Voltage Controlled Oscillator 
(VCO) used for LO. In software, the frequency condition 
cannot be exactly achieved due to a limited sampling rate. 
Shifting in the time domain will also induce spurious 
frequencies which will increase the detection error. To 
reduce detection errors, over-sampling is required.  
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Figure 1.Software Blocks for AM Receiver 

3.2. Software Generated Control Signals 
Figure 1 shows the blocks that were implemented in 
software for an Amplitude Modulated (AM) receiver [7]. 
The eight times over-sampled signal from the A/D is first 
filtered using a second order IIR band-pass filter, centered 
at the carrier frequency, with 3 dB attenuation bandwidth 
of 5 KHz. The filtered signal is then multiplied with the 
cosine of the sampled signal fc and integrated over eight 
samples. After integration, the data goes through 1:16 
decimation, filtering using a 96 tap 80dB FIR band-pass 
filter, rescaling, and DC removal. Finally, the data is sent to 
the D/A. The automatic frequency control (AFC) and the 
automatic gain control (AGC) functions are also 
implemented in software. The coefficients for the filters are 
pre-computed and stored in nonvolatile memory for each 
carrier in the AM frequency band. This is a new algorithm 
for implementing an AM radio. Using control signals 

generated by software, we are able to control the 
demodulation of AM signals using significantly less 
complex operations than otherwise achievable. 

3.3. Using Lookup Tables 
Converting cycle intensive divisions and trigonometric 
functions into lookup tables is a technique used in our DVB 
receiver.  One important function in communications is 
receiver synchronization. There is always a difference 
between the carrier frequency and the Local Oscillator due 
to reference frequency lack of precision. Minimizing the 
difference is the goal of frequency de-rotation. The de-
rotation function is described by the following equation: 
 

sss nTwjnTwjnTwwj eee .)( .  
 

where Ts is the sampling frequency and  is the frequency 
error. 

Conforming to the previous equation, the error  is 
cancelled by multiplying the incoming sampled waveform 
with a locally generated sequence of frequencies , 
usually stored in memory. However when memory size and 
access time are an issue, the LUT can be replaced by 
computations using the following approximation: 

)cos()sin()sin( and  
)sin()cos()cos( . In both cases 

the error  is supplied by the PLL or Frequency Lock 
Loop (FLL) block. 
 

3.4. Using Mathematical Manipulations for 
Parallelization 
In most communication systems the base band processing 
requires both  I and Q orthogonal sequences. In the 
following we show that through mathematical 
manipulations it is possible to use only one input sequence, 
either I or Q, resulting in HW simplification without 
significant increase in computational complexity. 

We assume an OFDM communication system such as 
DVB-T/H for example. The Fourier transform of the base 
band signals, IBB and QBB yields  

Where c*
0,0,k is the complex amplitude of the kth carrier, nT 

is replaced by n,  W-nk=e-j2 nk/M and M represents the 
number of samples in one symbol time interval less the 
guard time. Equation (2) is the most common approach for 
further base band processing. Another approach uses only 
sequence I (or Q):  Suppose  I (1) (t) and I (2) (t) are two 
consecutive symbols.  
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where )(,0,0 nTk  is described in [9] and  is the Dirac 
function. 
The complex Fourier transform of the two real symbols can 
be written as: 

From Equation (3), the two symbols are  

 

Both approaches have the same final result from a 
mathematical point of view, except for a scaling factor.  

3.5. Using Min Sum in LDPC Codes 
Low-density parity-check (LDPC) codes are linear block 
codes with the parity-check matrix containing only a few 
ones compared to the number of zeros. The performance of 
the LDPC codes comes very close to the Shannon limit for 
most of the different propagation channels. Until recently 
the implementation of the LDPC codes was prohibitive 
because of the computational complexity. 

The block sructure of the parity check matrix, 
specified in IEEE Std. 802.16e,  and the organization of 
these blocks in tiers are suitable for multithreaded decoder 
implementation. The nonzero blocks are only rotated 
versions of the identity matrix while the degree of the 
columns inside each tier is either one or zero. This structure 
will allow multiple threads to access independently the 
extrinsic information of the variable nodes. The decoding 
algorithm consists of horizontal update (or check function 
evaluations) and vertical update (summations). Because the 
matrix is sparse, it would be very inefficient to store the 
extrinsic information of variable nodes in a simple 2D array 
of size at most 1152 x 2304. Instead, only the nonzero 
elements are stored. This cuts down the necessary number 
of rows to the number of ones in any column (at most 6 for 
the proposed WiMax LDPC). This way, the necessary 
memory space will only be (6+1) x 2304 x  2 = 32 kB.  The 
extra row is necessary to keep track of the correct vertical 
index of the processed values. If handled properly, the 

compressed storage of variable nodes values doesn’t 
prohibit multithreaded processing. 

4. CONCLUSIONS 

We have described a number of SDR techniques for 
implemented communications algorithms in software. 
These techniques range in scope from simple high level 
coding guidelines to sophisticated software resampling 
techniques that reduce hardware component counts. The 
ability to dynamically select communications system 
components provides the flexibility to reduce the 
computational burden (i.e. power) if the system parameters 
permit.  
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