
COMPETITIVE DESIGN OF MULTIUSER MIMO INTERFERENCE SYSTEMS BASED ON
GAME THEORY: A UNIFIED FRAMEWORK

Gesualdo Scutari1, Daniel P. Palomar2, Sergio Barbarossa1

E-mail: <scutari, sergio>@infocom.uniroma1.it, palomar@ust.hk
1 Dpt. INFOCOM, Univ. of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome, Italy

2 Dpt. of Electronic and Computer Eng., Hong Kong Univ. of Science and Technology, Hong Kong.

ABSTRACT

In this paper we focus on the maximization of the information rates
subject to transmit power constraints for noncooperative multiple-
input multiple-output (MIMO) systems, using the same physical re-
sources, i.e., time, bandwidth and space. To derive decentralized
solutions that do not require any cooperation among the systems, the
optimization problem is formulated as a static noncooperative game.
The analysis of the game for arbitrary MIMO interference channels
is quite involved, since it requires the study of a set of nonlinear
nondifferentiable matrix-valued equations, based on the MIMO wa-
terfilling solution. To overcome this difficulty, we provide a new in-
terpretation of the waterfilling operator, for the general MIMO mul-
tiuser case, as a matrix projection. This key result allows us to sim-
plify the study of the game and to obtain sufficient conditions for
both uniqueness of the Nash Equilibrium (NE) and convergence of
the proposed totally asynchronous distributed algorithms. The pro-
posed approach provides a general framework that encompasses all
previous works, mostly concerned with the particular case of SISO
Gaussian frequency-selective interference channel.

Index Terms— MIMO, Interference Channel, Nash equilibria,
Asynchronous iterative waterfilling.

1. INTRODUCTION
In this paper we focus on the optimal transceiver design for a mul-
tiuser system composed of a set of Q noncooperative MIMO links,
sharing the same physical resources, e.g., time, frequency and space.
No multiplexing strategy is imposed a priori so that, in principle,
each user interferes with each other. The transmission over the
generic q-th MIMO channel with nTq transmit and nRq receive
dimensions can be described with the baseband signal model

yq = Hqqxq +
∑
r �=q

Hrqxr + nq , (1)

where xq∈ C
nTq

×1 is the vector transmitted by source q, Hrq ∈
C

nRq
×nTr is the cross-channel matrix between source r and desti-

nation q, yq∈ C
nRq

×1 is the vector received by destination q, and
nq∈ C

nRq
×1 is a zero-mean circularly symmetric complex Gaus-

sian noise vector with arbitrary (nonsingular) covariance matrix
Rnq . The second term on the right-hand side of (1) represents the
Multi-User Interference (MUI) received by the q-th destination and
caused by the other active links. The MIMO system model given
in (1) provides a unified way to represent many physical communi-
cation channels and multiuser systems of practical interest, such as
digital subscriber lines, single (or multi) antenna cellular radio, and
ad hoc wireless MIMO networks.

Adopting an information theoretical perspective, we focus on the
maximization of mutual information of each MIMO system in (1),
given constraints on the transmit power. Aiming at finding decen-
tralized solutions with no cooperation among the users, we formu-
late the optimization as a static (matrix-value) noncooperative game,
where every (MIMO) link is a player that competes against the others
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by choosing the strategy that maximizes his own information rate. A
Nash Equilibrium (NE) is reached when every player is unilaterally
optimal, in the sense that no player is willing to change his own
strategy as this would cause a performance loss [2].

The results existing in the available literature on the subject have
dealt with special cases of the proposed game theoretic formulation
[3]-[8]. Specifically, in [3]-[6] the authors focused on competitive
maximization of the information rate of all the links subject to in-
dividual transmit power constraints in a SISO frequency-selective
Gaussian interference channel [obtained from (1) when all the chan-
nel matrices are diagonalized by the same (DFT) matrix]. To reach
the Nash equilibria of such a game, alternative distributed algorithms
have been proposed, either synchronous − the sequential and simul-
taneous Iterative Waterfilling Algorithms (IWFAs) [3]-[5], [8] − or
asynchronous − the asynchronous IWFA [6]− along with their con-
vergence properties. In all these works, the players’ strategy was a
vector power allocation, i.e., a matrix linear precoder that keeps the
diagonal structure of the channel. In [7], it was shown that such a
structure is actually optimal in terms of Nash equilibrium, also in the
presence of a spectral mask constraint.

The analysis of the rate maximization game for arbitrary MIMO
channels is much more involved than in the cases mentioned before,
since as opposed to the SISO case where the set of eigenvectors of
the channel matrices is the same for all the channels, in the arbi-
trary MIMO case, the channel diagonalizing matrices are different
for every user, and there exists a complicated implicit relationship,
via the eigedecomposition, among the optimal covariance matrices
of all the users at the NE. Quite recently, there have been a few pa-
pers dealing with MIMO interference channels, where they provided
numerical results to show the existence of a NE [10, 11]. However,
a formal study of existence/uniqueness of the equilibrium and the
convergence of the proposed algorithms is missing in [10, 11].

In this paper we fill this gap by providing sufficient conditions
for the uniqueness of the Nash equilibrium and the convergence of
the proposed distributed algorithms. Since the characterization of
the equilibria of the game does not seem possible using the struc-
ture of the MIMO waterfilling best-response directly, we provide
first an equivalent expression of the MIMO waterfilling solution, so
that the Nash equilibria of the game can be equivalently rewritten
as the fixed-points of a more tractable matrix-valued mapping. This
result is based on our interpretation of the MIMO waterfilling solu-
tion as a proper matrix projection. Using this result, we can prove
that the solution set of of the game is always nonempty, for any set
of channel matrices and power constraints, and we provide suffi-
cient conditions for the uniqueness of the NE and the convergence
of the totally asynchronous IWFA (in the sense of [9]). The pro-
posed framework is sufficiently general to incorporate, as special
cases, the algorithms proposed in the literature [3]-[8] to solve the
rate-maximization game in Gaussian SISO frequency-selective in-
terference channels.

2. SYSTEMMODEL AND PROBLEM FORMULATION

Given the I/O system in (1), we make the following assumptions:
A.1) The encoding/decoding operations on each link are performed
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independently of the other links and thus no interference cancella-
tion is allowed. Hence, the overall system in (1) is modeled as a vec-
tor Gaussian interference channel, where MUI is treated as additive
colored noise; A.2) Each channel is assumed to change sufficiently
slowly to be considered fixed during the whole transmission, so that
the information theoretical results are meaningful; A.3) The channel
from each source to its own destination is known to the intended re-
ceiver, but not to the other terminals; knowledge of MUI covariance
matrix is supposed to be available at each receiver. Based on this in-
formation, each destination computes the optimal covariance matrix
for its own link and transmits it back to its transmitter through a low
bit rate (error-free) feedback channel.

The transmit power for each user is given by
E

{
‖xq‖

2
2

}
= Tr (Qq) ≤ Pq , (2)

where Pq is power in units of energy per transmission, andQq is the
covariance matrix of the symbol vector xq.
2.1. Game theoretical formulation
We consider a strategic noncooperative game in which the play-
ers are the MIMO links and the payoff functions are the informa-
tion rates of each link: Each player competes rationally to max-
imize his own rate, given the constraint in (2). Using the signal
model in (1), under A.1-A.3, the achievable rate Iq(Qq ,Q−q) of
each player q is computed as the maximum mutual information on
the q-th MIMO link, assuming Gaussian signaling and treating MUI
as additive noise:

Iq(Qq ,Q−q) = log
(∣∣∣I + QqH

H
qqR

−1
−qHqq

∣∣∣) (3)

where R−q � Rnq +
∑

r �=q HrqQrH
H
rq is the interference plus

noise covariance matrix, observed by user q, and Q−q � (Qr)r �=q

is the set of the covariance matrices of all the users, except the q-
th one. Hence, the strategy of each player amounts to finding the
optimal covariance matrix Qq that maximizes Iq(Qq ,Q−q) in (3),
under constraint (2). Stated in mathematical terms, the game can be
written as

(G ) :
maximize

Qq

Iq(Qq ,Q−q)

subject to Qq ∈ Qq,
∀q ∈ Ω, (4)

where Ω � {1, . . . , Q} is the set of the Q players (i.e., the links),
Iq(Qq, Q−q) is the payoff function of player q, given in (3), andQq

is the set of admissible strategies of player q, defined as

Qq �
{
Qq ∈ C

nTq
×nTq : Qq � 0, Tr(Qq) ≤ Pq

}
. (5)

The solutions to (4) are the well-known Nash Equilibria [2]. Interest-
ingly, for the payoff functions defined in (3), we can limit ourselves
to adopt pure strategies w.l.o.g., as we did in (4), since every NE of
the game is proved to be achievable using pure strategies [1, 7].

3. MIMOWATERFILLING OPERATOR AS A PROJECTOR
In [8] we showed that the waterfilling operator for SISO frequency-
selective channels can be interpreted as a projector onto a proper
set. This gave us a key tool to prove the convergence of the itera-
tive waterfilling algorithms in the multiuser case. In this section, we
generalize that interpretation to the more difficult MIMO multiuser
case. As for the SISO case, this result will be instrumental to study
game G and derive conditions for the convergence of the algorithms
proposed in the forthcoming sections [1].
At any NE of game G , if it exists, the optimal users’ strategy profile
{Q�

q}q∈Ω must satisfy the following simultaneous multiuser water-
filling equations: ∀q ∈ Ω,

Q�
q = WFq

(
Q�

1 , . . . ,Q�
q−1, Q

�
q+1, . . . ,Q

�
Q

)
= WFq(Q

�
−q) ,

(6)

with the waterfilling operatorWFq (·) defined as

WFq (Q−q) � Uq

(
μqI−D

−1
q

)+
U

H
q , (7)

where in (7) we used the following eigendecomposition

H
H
qqR

−1
−qHqq � UqDqU

H
q , (8)

whereUq = Uq(Q−q) ∈ C
nTq

×Lq is the semi-unitary matrix with
columns equal to the eigenvectors ofHH

qqR
−1
−qHqq corresponding to

the Lq = rank(Hqq) ≤ min(nTq , nRq ) largest eigenvalues, Dq =
Dq(Q−q) is a Lq × Lq diagonal matrix whose positive diagonal
entries are equal to the Lq largest eigenvalues ofHH

qqR−qHqq , and
R−q = R−q(Q−q) = Rnq +

∑
r �=q

HrqQrH
H
rq.

We show now that the MIMO waterfilling operator in (7) can
be interpreted as a matrix projector in the Frobenius norm1onto the
convex setQq, defined in (5).

Lemma 1 ([1]) Let X0 be a Hermitian matrix with eigendecompo-
sition X0 = U0D0U

H
0 . The matrix projection of X0 with respect

to the Frobenius norm onto the convex setQq defined in (5), denoted
by [X0]Qq

, is by definition the solution to the following convex op-
timization problem:

minimize
X

‖X−X0‖
2
F

subject to X ∈ Qq, ,
(9)

and assumes the following form:

[X0]Qq
= U0 (D0 − μI)+ U

H
0 , (10)

where (x)+ denotes the component-wise maximum between x and
0, and μ is chosen so that Tr

{
(D0 − μI)+

}
= Pq.

Denoting by P
||
N (A) the orthogonal projection onto the null

space of the matrix A, and invoking Lemma 1, we obtain the fol-
lowing equivalent expression for the multiuser MIMO waterfilling
operator.

Theorem 2 ([1]) The waterfilling operator WFq (Q−q) in (7) can
be equivalently written, for sufficiently large c ∈ R++, as

WFq (Q−q) =

[
−

((
H

H
qqR

−1
−qHqq

)�

+ cP
||
N (Hqq)

)]
Qq

, (11)

where � denotes the Moore-Penrose pseudoinverse andQq is defined
in (5).

Corollary 3 In the special case of nonsingular matrixHH
qqR

−1
−qHqq,

the waterfilling operatorWFq (Q−q) in (7) becomes

WFq (Q−q) =

[
−

(
H

H
qqR

−1
−qHqq

)−1
]

Qq

. (12)

Comparing (6) with (11), one can see that all the Nash equilibria
of game G can be alternatively obtained as the fixed-points of the
mapping defined in (11):

Q
�
q =

[
−

((
H

H
qqR

�−1

−q Hqq

)�

+ cP
||
N (Hqq)

)]
Qq

, ∀q ∈ Ω,

(13)
where R�−1

−q = R−1
−q(Q

�
−q). As proved in [1], the proposed in-

terpretation of the Nash equilibria of game G as fixed-points of the
waterfilling projector represents the key instrument to strongly sim-
plify the study of uniqueness of the equilibria and to obtain sufficient
conditions for the convergence of the proposed distributed iterative
algorithms.

1The Frobenius norm ‖X‖F of X is defined as ‖X‖F �(
Tr{XHX}

)1/2 [12].
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4. EXISTENCE AND UNIQUENESS OF THE NE

Introducing the nonnegative matrix S ∈ R
Q×Q
+ , defined as

[S]qr �

{
ρ

(
HH

rqH
� H
qq H�

qqHrq

)
,

0,
if r �= q,
otherwise. (14)

where ρ (A) denotes the spectral radius2 of A, conditions for exis-
tence and uniqueness of the NE of game G , are given by the follow-
ing theorem.

Theorem 4 ([1]) Game G always admits a NE satisfying (6), for
any set of channel matrices and transmit power of the users. Fur-
thermore, the NE is unique if

ρ (S) < 1, (C1)

where S is defined in (14).

To give additional insight into the physical interpretation of suf-
ficient conditions for the uniqueness of the NE, we provide the fol-
lowing corollary of Theorem 4.
Corollary 5 A sufficient conditions for (C1) in Theorem 4 is given
by one of the two following set of conditions:

1

wq

∑
r �=q

ρ
(
H

H
rqH

�H
qq H

�
qqHrq

)
wr < 1, ∀q ∈ Ω, (C2)

1

wr

∑
q �=r

ρ
(
H

H
rqH

�H
qq H

�
qqHrq

)
wq < 1, ∀r ∈ Ω, (C3)

wherew � [w1, . . . , wQ]T is any positive vector.

Remark 1 - Physical interpretation of uniqueness conditions.
Looking at conditions (C2)-(C3), it turns out, as expected, that the
uniqueness of a NE is ensured if the interference among the links is
sufficiently small. The importance of conditions (C2)-(C3) is that
they quantify how small the interference must be to guarantee that
the equilibrium is indeed unique. Specifically, condition (C2) can be
interpreted as a constraint on the maximum amount of interference
that each receiver can tolerate, whereas (C3) introduces an upper
bound on the maximum level of interference that each transmitter is
allowed to generate. This result agrees with the intuition that, as the
MUI becomes negligible, the rates of the users become decoupled
and then the rate-maximization problem in (4) for each user admits
a unique solution.
Remark 2 - Special cases. Conditions in Theorem 4 and Corol-
lary 5 for the uniqueness of the NE can be applied to any MIMO
interference system, irrespective of the specific structure of channel
matrices. Interestingly, most of the conditions in [3]-[7] come natu-
rally from (C1) as special cases, simply using the fact that, in SISO
frequency-selective interference channels, all the (Toeplits and cir-
culant) channel matrices are diagonalized by the same DFT matrix.

5. MIMO ASYNCHRONOUS IWFA
To reach the Nash equilibria of game G , we propose an instance
of the totally asynchronous scheme of [9], based on the waterfill-
ing mapping (7) (see also (11)), called asynchronous IWFA [1]. In
the asynchronous IWFA, all the users maximize their own rate in a
totally asynchronous way: some users are allowed to update their
strategy more frequently than the others, and they might perform
these updates using outdated information on the interference caused
by the others. We show in the following that, whatever the asyn-
chronous mechanism is, such a procedure converges to a stable NE
of the game, under mild conditions on the multiuser interference.

2The spectral radius ρ (A) of the matrix A is defined as ρ (A) �
max{|λ| : λ ∈ σ(A)}, with σ(A) denoting the spectrum ofA.

To provide a formal description of the proposed asynchronous
IWFA, we need the following preliminary definitions. We assume,
without loss of generality, that the set of times at which one or
more users update their strategies is the discrete set T = N+ =

{0, 1, 2, . . .} . Let Q(n)
q denote the covariance matrix of the vector

signal transmitted by user q at the n-th iteration, and let Tq ⊆ T

denote the set of times n at which Q
(n)
q is updated (thus, at time

n /∈ Tq, Q
(n)
q is left unchanged). Let τq

r(n) denote the most recent
time at which the interference from user r is perceived by user q at
the n-th iteration (observe that τq

r(n) satisfies 0 ≤ τq
r(n) ≤ n).

Hence, if user q updates his own covariance matrix at the n-th itera-
tion, then he chooses his optimal Q(n)

q , according to (7), and using
the interference level caused by

Q
(τ q(n))
−q �

(
Q

(τ
q
1
(n))

1 , . . . ,Q
(τ

q
q−1

(n))

q−1 ,Q
(τ

q
q+1

(n))

q+1 , . . . ,Q
(τ

q
Q

(n))

Q

)
.

(15)
The overall system is said to be totally asynchronous if the follow-
ing assumptions are satisfied for each q [9]: A1) 0 ≤ τq

r(n) ≤ n;
A2) limk→∞ τ q

r(nk) = +∞; and A3) |Tq | = ∞; where {nk} is a
sequence of elements in Tq that tends to infinity. These assumptions
are standard in asynchronous convergence theory [9], and they are
fulfilled in any practical implementation. Using the above notation,
the asynchronous IWFA is formally described in Algorithm 1, where
Nit denotes the number of iterations andQ

(τ q(n))
−q is defined in (15).

Algorithm 1: MIMO Asynchronous IWFA

Set n = 0 andQ
(0)
q = any feasible covariance matrix;

for n = 0 : Nit

Q
(n+1)
q =

{
WFq

(
Q

(τ q(n))
−q

)
, if n ∈ Tq ,

Q
(n)
q , otherwise;

∀q ∈ Ω (16)

end

The convergence of the algorithm is guaranteed under the fol-
lowing sufficient conditions.

Theorem 6 ([1]) Assume that condition (C1) of Theorem 4 is sat-
isfied. Then, as Nit → ∞, the asynchronous IWFA, described in
Algorithm 1, converges to the unique NE of game G , for any set of
feasible initial conditions and updating schedule.

Remark 3 - Global convergence and robustness of the algorithm.
Even though the rate maximization game in (4) and the consequent
waterfillingmapping (7) are nonlinear, condition (C1) guarantees the
global convergence of the asynchronous IWFA. Observe that Algo-
rithm 1 contains as special cases a plethora of algorithms, each one
obtained by a possible choice of the scheduling of the users in the
updating procedure (i.e., the parameters {τq

r(n)} and {Tq}). The
important result stated in Theorem 6 is that all the algorithms re-
sulting as special cases of the asynchronous IWFA are guaranteed to
reach the unique NE of the game, under the same set of convergence
conditions (provided that (A1)-(A3) are satisfied), since condition
(C1) does not depend on the particular choice of {Tq} and {τ q

r(n)}.
Two classical examples are the sequential and the simultane-

ous IWFAs, obtained from the asynchronous IWFA as special cases
when the users update their own strategy sequentially [i.e., Tq =
{q, Q + q, 2Q + q, . . .} and τq

r(n) = n, ∀r, q] or simultaneously
[i.e., Tq = N+, and τq

r(n) = n, ∀r, q], as explicitly shown in Al-
gorithm 2 and Algorithm 3, respectively. By direct product of our
unified framework, invoking Theorem 6 we infer that both sequen-
tial and simultaneous IWFAs converge to the unique NE of game G

under the same condition (C1). It follows from Theorem 6 also that
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slight variations of the sequential or simultaneous IWFAs that fall in
the unified framework of the asynchronous IWFA, are still guaran-
teed to converge, under condition (C1). For example, in the Gauss-
Seidel scheme of Algorithm 2, some user may skip sometimes his
update, or use an outdated version of the covariance matrix of the in-
terference, and the order in the updates of the users can be changed,
without affecting the convergence of the algorithm, what is affected
is only the convergence time.

Algorithm 2: MIMO Sequential IWFA

SetQ(0)
q = any feasible covariance matrix, ∀q ∈ Ω;

for n = 0 : Nit

Q
(n+1)
q =

{
WFq

(
Q

(n)
−q

)
, if (n + 1)modQ = q,

Q
(n)
q , otherwise,

∀q ∈ Ω;

(17)

end

Algorithm 3: MIMO Simultaneous IWFA

SetQ(0)
q = any feasible covariance matrix, ∀q ∈ Ω;

for n = 0 : Nit

Q
(n+1)
q = WFq

(
Q

(n)
−q

)
, ∀q ∈ Ω, (18)

end

Remark 4 - Well-known cases. The sequential and simultaneous
IWFAs, described in Algorithm 2 and 3 are the natural generaliza-
tion of the well-known sequential [3]-[8] and simultaneous [8] IW-
FAs, proposed in the literature to solve the rate-maximization game
in Gaussian SISO frequency-selective parallel interference channels,
to the more general case of arbitrary Gaussian MIMO interference
channels.

6. NUMERICAL RESULTS AND CONCLUSIONS

MIMO systems have shown great potential for providing high spec-
tral efficiency in both isolated, single-user, wireless links without
interference or multiple access and broadcast channels. Here we
quantify, by simulations, this potential gain for MIMO interference
systems. In Figure 1, we plot the sum-rate of a two-user frequency-
selective MIMO system as a function of the inter-pair distance
among the links, for different number of transmit/receive antennas.
The rate curves are averaged over 500 independent channel realiza-
tions, whose taps are simulated as i.i.d. Gaussian random variables
with zero mean and unit variance. For the sake of simplicity, the
system is assumed to be symmetric, i.e., the transmitters have the
same power budget and the interference links are at the same dis-
tance (i.e., drq = dqr, ∀q, r), so that the cross channel gains are
comparable in average sense. From the figure we may infer that, as
for isolated single-user systems or multiple access/broadcast chan-
nels, also in MIMO interference channels, increasing the number of
antennas at both the transmitter and the receiver side leads to a better
performance. The interesting result, coming from Figure 1, is that
the incremental gain due to the use of multiple transmit/receive an-
tennas is almost independent of the interference level in the system,
since the MIMO (incremental) gains in the high-interference case
(small values of drq/dqq) almost coincide with the corresponding
(incremental) gains obtained in the low-interference case (large val-
ues of drq/dqq), at least for the system simulated in Figure 1. This
desired property is due to the fact that the MIMO channel provides
more degrees of freedom for each user than those available in the

SISO channel, that can be explored to find out the best partition of
the available resources for each user, possibly cancelling the MUI.
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Fig. 1. Sum-Rate of the users versus drq/dqq ;Q = 2, drq = dqr , drr = dqq =

1, r = 1, 2, γ = 2.5, P1/σ2
1 = P2/σ2

2 = 5dB, Lh = 6, N = 16.

In conclusion, in this paper, we provided a game theoretical
formulation for the maximization of the information rates of non-
cooperative MIMO multiuser interference systems. We considered
the maximization of mutual information on each link, given con-
straints on the transmit power. We proved that a NE always exists
and provided sufficient conditions for the uniqueness of the equilib-
rium, valid for arbitrary MIMO channels. These conditions guar-
antee also the convergence of the proposed totally asynchronous
IWFA. Previous results in the literature, mostly dealing with the rate-
maximization game in SISO frequency-selective interference chan-
nels, were showed to naturally come form our general unified frame-
work as special cases. The proposed framework is based on a key
result: the novel interpretation of the MIMO multiuser waterfilling
operator as a proper matrix projection.
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