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ABSTRACT

Collective choice functions and an axiomatic framework will be used
to characterize the structure of solutions of resource allocation prob-
lems on feasible utility sets. Feasible utility sets will be character-
ized as level sets of general interference functions. General fairness
constraints will be introduced and solution outcomes satisfying the
properties of efficiency, robustness and fairness will be analyzed. A
new type of sets, basic bargaining sets will be defined and if the
properties of the solution outcome are known on these sets then we
know it’s properties for all feasible utility regions.

Index Terms— Adaptive Signal Processing, Communication
Systems, Mobile Communication, Game Theory

1. INTRODUCTION

We utilize collective choice functions to characterize solution out-
comes of resource allocation strategies. A collective choice function
is a mapping between a set and one point in this set [1]. It is by
definition single valued. Depending on the properties which the col-
lective choice function satisfies it chooses a corresponding solution
outcome in this set. We would like our resource allocation strategies
to satisfy the properties of a certain kind of efficiency, robustness
and general fairness constraints.

A certain kind of efficiency is emulated by ensuring that a collec-
tive choice function satisfies the property of weak Pareto optimality,
implying that the solution outcome is on the boundary of the fea-
sible utility region. We can picture an utility region corresponding
to the SIR region for a particular channel condition. The utility re-
gion changes with the channel, resulting in a new operating point
on the boundary of the region corresponding to our collective choice
function. Robustness to channel estimation and prediction errors is
ensured if the axiom of feasible set continuity is satisfied by the col-
lective choice function. General fairness constraints are defined in
Section 3. We call them entitled fairness constraints and they are
much more general than max−min fairness. Fairness as defined
here implies that if a particular user’s channel conditions improves,
then the amount of utility that the user obtains should improve in a
similar proportion as well.

There is some previous work, which uses a game theoretic
framework to address problems in wireless networks, for e.g. [2–6].
Similarly, entitled fairness constraints are interpreted differently by
different researchers. We mention some references in relation to
work on fairness constraints [7,8]. Our reference list is by no means
comprehensive, there have been different approaches of using game

theory in wireless networks and on fairness constraints and we refer
to the papers in our references as some additional sources.

The paper is organized as follows: Section 2 describes the ana-
lytical framework used in this paper. It expresses feasible utility sets
as sub-level sets of interference functions and explains our motiva-
tion for bargaining over comprehensive sets. Section 3 presents the
axiomatic framework introducing the entitled fairness constraints. It
introduces the collective choice function for representing resource
allocation strategies. Section 4 characterizes the structure of the so-
lution outcomes under entitled fairness constraints. It introduces ba-
sic bargaining sets, which are a nice way of testing if a particular
collective choice function satisfies certain axioms and get more intu-
ition on the solution outcome of resource allocation strategies. It an-
alyzes the problem: what solution outcomes are permitted if we ex-
pect our collective choice function to satisfy the fairness constraints?
The paper is concluded in Section 5.

2. ANALYTICAL FRAMEWORK

We provide an abstract framework for the analysis of signal-to-
interference ratio (SIR) regions and certain rate regions. The analyt-
ical framework with the aid of collective choice functions, character-
izes the trade-off between the various available resources (utilities)
with the objective of attaining a suitable operating point in the spec-
ified utility region. This often involves a compromise between the
users, dependency on various strategies (fairness, efficiency).

Some notation used in the paper: I represents interference func-
tions. K is the number of users in the system. u represents a vector,
such that u = [u1, . . . , uK ]T . uk is a scalar for k ∈ {1, . . . , K} :=
K. U represents a set. UK represents a family of sets for the K
users such that U ∈ UK such that U ⊂ R

K
+ . u(2) ≤ u(1) implies

that u(2)
k ≤ u

(1)
k ,∀k ∈ K; u(2) < u(1) implies that u

(1)
k ≤ u

(2)
k

and u
(1)
k0

< u
(2)
k0
for atleast one k0; u(1) � u(2) implies that

u
(1)
k < u

(2)
k ,∀k ∈ K. Similarly for ≥, > and �. We begin by

characterizing feasible utility regions as sub-level sets defined by in-
terference functions. For this purpose we introduce the interference
function framework in section 2.1 below.

2.1. Interference functions and power constraints

Multiuser interference I is frequently characterized as a function of
power levels at the desired receiver point. Usually I is some function
of the power allocation p = [p1, p2, . . . , pK ]T , where pk ≥ 0 is the
transmission power of the kth interfering user. I does not need to
depend on powers. The interference function framework in more
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abstract. The concept of interference function as introduced in [9]
and extended in [10,11] is mentioned below. I(p) is an interference
if it satisfies the following three axioms:

A1 non-negativity I(p) ≥ 0,p ∈ R
K
+ ,

A2 scale-invariance I(αp) = αI(p), α ∈ R+,

A3 monotonicity I(p) ≥ I(p̂) if p ≥ p̂.

This is slightly different fromYates framework [9]. In the framework
from Yates, the presence of noise power was implicitly assumed.
Such a noise component can be included in the above framework
by using the extended power allocation, p̄ = [p1, p2, . . . , pK , σ2]T ,
where σ2 is the noise variance and I is strictly monotonic in the
K + 1th component. It can be shown that the rate regions can
be written as sub-level sets of interference functions. The conse-
quence of this representation can be seen below, where we give
certain examples of rate regions for different type of power con-
straints. We present an example of a SIR region with combined
individual and total power constraints. Here we consider a total
power constraint of Ptot on the system and the individual power lim-
its for each user, written in vector form as p̂ = [p̂1, p̂2, . . . , p̂K ]T .
We introduce a C function to represent the SIR (γ) region as fol-
lows, C(γ, p̂, Ptot) = infp>0 maxk∈K

γkIk(p̄)
pk

such that pk ≤ p̂k,
k ∈ K,

PK

k=1 pk ≤ Ptot and pK+1 = σ2. The SIR region is the
sub-level set, defined by the following equation:

U(p̂, Ptot) = {γ ∈ R
K
+ : C(γ, p̂, Ptot) ≤ 1}. (1)

Similarly, equations (2) and (3) define SIR regions, which are sub-
level sets with total power constraints and individual power con-
straints respectively. Since the constraints defining these SIR regions
change, we have different optimization variables for the C functions
in equations 1, 2 and 3 respectively.

U(Ptot) = {γ ∈ R
K
+ : C(γ, Ptot) ≤ 1} (2)

whereC(γ, Ptot) = infp>0 maxk∈K
γkIk(p̄)

pk

such that
PK

k=1 pk ≤

Ptot and pK+1 = σ2.

U(p̂) = {γ ∈ R
K
+ : C(γ, p̂) ≤ 1} (3)

where C(γ, p̂) = infp>0 maxk∈K
γkIk(p̄)

pk

such that pk ≤ p̂k, k ∈
K and pK+1 = σ2.

2.2. Structure of the Rate region

The SIR regions are completely characterized by the C functions de-
scribed in Section 2.1 which are representative of the SIR regions.
C functions are interference functions, satisfying the axioms A1 to
A3. Classical Nash bargaining theory [12], assumes that the regions
are convex. In the case of the wireless scenario, we can completely
characterize the conditions which, when imposed on the C func-
tions, result in corresponding convex utility regions. The rate re-
gion is convex if and only if the C function is a convex interference
function. However, the C functions are generally not convex. The
complete characterization of such functions has been developed in a
theory in [13]. In our paper, we bargain over bounded comprehen-
sive sets. What we mean by a comprehensive set, will be defined
below.

Definition 1. Comprehensive set: A set U ⊂ R
K
++ is called com-

prehensive if for all u(1) ∈ U and u(2) ∈ R
K
++, u(2) ≤ u(1) im-

plies u(2) ∈ U. A set U ∈ UK if and only if ∀u(1) ∈ U and
∀u(2) ∈ R

K
++, u(2) ≤ u(1) implies u(2) ∈ U.

Remark 1. UK is the family of all comprehensive utility sets, and
the sets described in equations (1) - (3) are examples of such utility
sets, due to the properties A1 - A3.
Remark 2. If we have log-convex interference functions [11] then
we end up with strictly convex upper bounded sets and we can extend
the Nash bargaining framework to log-convex sets [14].

We now state a theorem, which states that the SIR regions (rate
regions) described in the Section 2.1 are convex, closed, comprehen-
sive sets [13].

Theorem 1. The utility sets (1), (2) and (3) are convex, closed,
comprehensive sets from R

K
++ if and only if C(γ, Ptot), C(γ, p̂),

C(γ, p̂, Ptot) and C(γ) are convex interference functions with re-
spect to γ.

Remark 3. With reference to Theorem 1, it should be noted that
even under the assumption that the interference functions (I1, . . .,
IK ) have a special structure (for e.g. convexity, concavity or log-
convexity), that it might not be possible to show that the correspond-
ing C functions are convex. Even under the assumption, that we
have linear interference functions, the corresponding regions U are
not in general convex [15].

It has been shown in [10] that for the set of all interference func-
tions there exists a one to one correspondence to the family of all
comprehensive sets. Feasible utility regions in wireless communi-
cation (e.g. rate region) can be completely characterized by level
sets of interference functions. These feasible SIR regions are also
comprehensive closed and bounded sets as shall be shown in Section
2.3.

2.3. Feasible utility sets

The SIR region, and certain achievable rate regions and certain QoS
regions are different examples of feasible utility regions. The family
of feasible rate regions and the family of QoS regions are examples
of UK . A bargaining game forK users is defined as the pair (U,d)
where U ⊂ R

K
++ is the utility set and d ∈ {u ∈ U : ∃u′ > u} is

the disagreement point. u ∈ U is a particular utility vector, where
u = [u1, u2, . . . , uK ] and uk is the utility of the kth user. For the
sake of simplicity, we can assume that d = 0. This assumption is
set by focussing on a sub-region ofU, with modified utilities ũk =
uk − dk where ũk, uk are the new and old utility for the kth user
respectively, for all k ∈ K.
Remark 4. IfU1,U2 ∈ U

K are two comprehensive feasible utility
regions thenU1∪U2 is also comprehensive and soU1∪U2 ∈ U

K ,
unlike that for convex sets, where the union of convex sets is not
convex. If Ij(p) and Ik(p) are two interference functions then,
I(p) = minj,k{Ij(p),Ik(p)} is also an interference function.

3. AXIOMS AND THE COLLECTIVE CHOICE FUNCTION

Based on the axioms the collective choice function satisfies, the
resource allocation strategy characterized by the collective choice
function satisfies different properties and leads to a different oper-
ating point in the region, making the axioms quite intuitive and a
natural framework to work within. We begin by introducing the col-
lective choice function. LetΦ : U �→ R

K
++ be a bargaining solution,

whereU ∈ UK , then:

Definition 2. A collective choice function on the family UK of sets
U, is defined as any function Φ : U �→ R

K
++ such that Φ(U) ∈ U,

∀U ∈ UK . Φ(U) is as per definition single-valued.
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A particular Φ representing a resource allocation strategy can
under certain constraints be described in terms of a monotone path
shown in Figure 1, which has been defined below.

Definition 3. A monotone path is a continuous curve φ(s) ∈ R
K
++,

where s ∈ [0,∞), such that φ(ŝ) ≥ φ(s) for ŝ > s and a strict
monotone path is a curve for which φ(ŝ)� φ(s), for, ŝ > s.

Example 1. In Definition 3, s is a parameterization which could,
e.g. represent the sum of utilities. Let rate be the desired utility then,PK

k=1 rk ≤ s where rk is the rate of the kth user. φ(s) represents a
rate vector whose component-wise sum rate is equal to s.

We now define the axioms which shall be used in the analysis in
our paper. Some of these have been mentioned in [12, 16].
WPO Weak Pareto Optimality: For U ∈ R

K , let W (U) :=

{u(1) ∈ U : there is no u(2) ∈ U with u(2) � u(1)}. Then
if for everyU ∈ UK , Φ(U) ∈W (U), Φ satisfiesWPO.

SCONT Feasible Set Continuity: For every sequence of sets U,
U1, U2, . . ., Un ∈ UK , if Un → U in the metric space
1, then Φ(Un) → Φ(U), then Φ satisfies SCONT on the
family of sets UK .

FAIR Entitled Fairness: For every U1 ⊆ U2, the collective
choice function Φ is said to satisfy FAIR if and only if
Φ(U1) ≤ Φ(U2).

SFAIR Strong Entitled Fairness: For every U1 ⊆ U2, Φ(U1) ≤
Φ(U2) and if U1 ⊂ int(U2), implies that Φ(U1) <
Φ(U2).

WPO has important practical implications which shall be investi-
gated further in combination with other axioms. A Pareto optimum
states that it is impossible to find another point which leads to strictly
superior performance for all the users in the systems simultaneously.
We would like all resource allocation strategies to have a solution
outcome, which operates on the boundary, satisfying WPO. The
problem we are now faced with is: Of all the Pareto optimal points
on the boundary of the region, at which one should the resource allo-
cation strategy operate? Based on the system objective, the resource
allocation strategy (collective choice function) should satisfy certain
other axioms which we introduce below. These axioms could help
us select one point on the boundary which is the desired solution
outcome. SCONT implies that, Φ is said to satisfy SCONT on
the family UK when the sequence of sets U1, U2, . . ., Un and the
limit set U belong to the family of sets UK . The axioms described
so far are the basic axioms of our framework. We now introduce our
general fairness constraints.

FAIR implies that, if the utility region increases or stays the
same as compared to a previous utility region, then a collective
choice function chooses a solution outcome, which should be better
or stay the same. SFAIR is closely related to the previous ax-
iom, implying that, if the new utility region grows compared to the

1The term metric space has been used for simplicity. The definition uses
Hausdorff distance or Hausdorff metric defined as follows: LetU1 and U

2

be two compact subsets of a metric space U
K . The Hausdorff distance

dH(U1,U2) is the minimal number r such that the r-neighborhoods ofU1

contains U
2 and the closed r-neighborhood of U2 contains U

1. In other
words, if d(u(1),u(2)) denotes the distance in UK , then

dH(U1,U2) = max
˘

sup
u(1)∈U1

inf
u(2)∈U2

d(u(1), u(2)),

sup
u(2)∈U2

inf
u(1)∈U1

d(u(1) ,u(2))
¯
.
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Φ(U2)

u1

u2

Fig. 1. φ(s) is a monotone path for some parameterization s;U1 is
an example of a basic bargaining set;U2 is some feasible utility set;
Φ(U2) is a solution outcome.

previous utility region, such that, the intersection of the old region
with the axis and Pareto boundary of the new region is an empty set,
then Φ chooses a solution outcome, which should be strictly better.
Traditional fairness constraints imply that there is some kind of fair
distribution of resources amongst the different users which restricts
the objective function from being maximized without any consid-
eration to the marginalized users. One example of the general idea
of fairness in wireless networks is the proportional fair scheduling
algorithm described in [17].

Example 2. Our fairness constraints have a different interpretation
as compared to [17]. Let Φ represent some resource allocation strat-
egy. For two different rate regions corresponding to two different
channel conditions such that U1 ⊆ U2 then according to axiom
FAIR it is “only fair” to expect that the solution outcome, for ex-
ample, such as a rate maximizing strategy Φ conforms to the rule
Φ(U2) ≥ Φ(U1). So the solution outcome Φ, ∀k ∈ K is better or
atleast as good as, forU2 thanU1.

4. STRUCTURE OF RESOURCE ALLOCATION
SOLUTIONS

Here we characterize some properties of the collective choice func-
tion Φ. Based on which axioms and fairness constraints are satisfied
by Φ, the solution outcome to the corresponding resource allocation
strategy satisfies certain properties. E.g. if Φ satisfies the axiom
of SCONT on UK then it implies that the solution is robust to
changes in the channel conditions, estimation and prediction errors,
since small changes in the set lead to small changes of the solution
outcome. We now define an important vehicle for our analysis based
on Definitions 2 and 3.

Definition 4. Monotone Path Collective Choice FunctionMPCCF :
Φ is aMPCCF on UK if, there exists a monotone path φ, such that
∀U ∈ UK , Φ(U) = φ(ŝ) where ŝ = inf s, such that φ(s) /∈ U}.

Similarly, if φ is a strict monotone path, then the resulting col-
lective choice function Φ is called a strictMonotone Path Collective
Choice Function on UK .

Based on the axioms which the collective choice function satis-
fies we obtain the following results:

Theorem 2. A collective choice function Φ satisfies the axioms of
WPO, SCONT and SFAIR on the family of sets UK if and only
if Φ is a strict MPCCF , i.e., φ(s) corresponding to Φ, is strict
monotone path.
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Theorem 2 can be extended to the axiom of FAIR instead
of SFAIR, though it leads to certain mathematical complications
which we are still in the process of investigating so that we can
obtain a good physical motivation for the result. Theorem 2 along
with a new type of sets basic bargaining sets U(λ) (displayed in
Figure 1) we introduce below, are a useful testing tool for checking
which set of axioms a particular Φ satisfies.

Definition 5. Basic bargaining setsU(λ) are defined as: U(λ) :=

{u ∈ R
K
++ :

PK

k=1 uk ≤ λ}where λ ∈ R+ andu = [u1, . . . , uK ]T .

We define the curve φ1(λ) by applying the collective choice
function on basic bargaining sets, i.e. φ1(λ) := Φ(U(λ)) where
0 < λ < ∞.

Remark 5. If φ1(λ) is a strict monotone path and Φ satisfies the
axioms of WPO and SCONT then Φ also satisfies the axiom
SFAIR.

We can see that φ1 is completely specified by the basic bargain-
ing sets. For the basic bargaining sets, we can test different curves
φ1 corresponding to different resource allocation strategies (collec-
tive choice functions) and check if they are strict monotone and con-
clude which properties the corresponding collective choice function
Φ satisfies.

Remark 6. If the behavior of the solution outcome is known on the
basic bargaining sets, then we can characterize the properties of the
solution outcome for all feasible utility regions.

Example 3. An example of the entitled fairness constraints is SIR
min−max balancing. Considering a fixed parameter z which
defines a particular choice of receive filter (like MMSE, matched
filter), we have an expression of the SIR of the kth user given by,
SIRk(p, zk) = pk

[V(z)p]k
, ∀k. The solution to the optimization

problem is C(γ, z) = infp>0:‖p‖1=1

`
max1≤k≤K

γk[V(z)p]k
pk

´

where the feasible SIR targets are given by C(γ, z) ≤ 1.

5. CONCLUSION

We have characterized resource allocation strategies using an ax-
iomatic framework and collective choice functions. Basic bargain-
ing sets, which can be used to test the various properties satisfied
by a particular monotone path, were introduced. Knowing the prop-
erties of the solution outcome for the basic bargaining sets permits
us to derive the properties of the solution outcome for all feasible
utility sets. Hence the bargaining sets are a useful tool for under-
standing the behavior of the solution outcome to resource allocation
strategies. Results pertaining to robustness of strategies under effi-
ciency and general fairness constraints were presented. Although the
concrete shape of the collective choice function is dependent on the
region, it is always a monotone path or strict monotone path. The
structure of the family of feasible utility sets is very important as
it defines the possibilities and degrees of freedom for obtaining so-
lution outcomes. A consequence of the fairness constraints is that
there exists no resource allocation strategy on the family of sets UK ,
which satisfies the properties of efficiency, robustness and entitled
fairness and does not satisfy strong entitled fairness.
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