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ABSTRACT
Game theory has emerged as a new mathematical tool in the
analysis and design of wireless communication systems, be-
ing particularly useful in studying the interactions among adap-
tive transmitters that attempt to achieve specific objectives
without cooperation. In this paper we present application of
separable game theory to the development of adaptive algo-
rithms for joint codeword optimization and power control in
Code Division Multiple Access (CDMA) systems.

Index Terms— CDMA, codeword adaptation, power con-
trol, separable games, Nash equilibrium.

1. INTRODUCTION

Non-cooperative game theory provides a mathematical frame-
work for studying interactions among players that seek to
optimize specific individual objectives without cooperation,
and has emerged as a new mathematical tool in the analy-
sis and design of current and future wireless communication
systems [1]. In particular, we note the recent game theoretic
approaches to CDMA codeword optimization [2–4] as well
as to codeword and power adaptation [5]. In [4] game theory
is used to study the stability of codeword adaptation in asyn-
chronous CDMA systems for single and multiple cell wireless
systems. Related reference [5] uses separable game theory to
analyze the stability of joint power control and codeword op-
timization in similar single and multi-cell CDMA systems.
References [2, 3] take a different approach and model code-
word adaptation by interference avoidance [6] using potential
game theory.
In this paper we apply separable game theory to joint code-

word optimization and power control in uplink CDMA sys-
tems to develop adaptive algorithms that employ incremental
codeword and power updates in the direction of the best strat-
egy. Such updates are desirable in practical implementations
since they allow the receiver to follow transmitter changes
with corresponding incremental changes of the receiver filter
and continue detection of transmitted symbols with high ac-
curacy, and are useful in dynamic wireless systems to track
variable quality of service (QoS) parameters or variable num-
ber of active users in the system.

2. SYSTEMMODEL AND PROBLEM STATEMENT
We consider the uplink of a synchronous CDMA system with
K active users in a signal space of dimensionN for which the
received signal at the base station is given by the expression

r =

K∑
k=1

bk
√

pksk + n = SP
1/2

b + n (1)

where S = [s1, . . . , sk, . . . , sK ] is the N ×K codeword ma-
trix having as columns the unit-norm codewords {sk} of ac-
tive users in the system, P = diag[p1, . . . , pk, . . . , pK ] is the
K ×K diagonal matrix containing received powers of active
users, b = [b1 . . . bk . . . bK ]� is the K-dimensional vector
containing the information symbols transmitted by users, and
n is the additive white Gaussian noise (AWGN) that corrupts
the received signal with zero-mean and positive definite co-
variance matrixW = E[nn

�].
Formally, we note that all user codewords take values in

the N -dimensional sphere with radius 1

Sk = {sk|sk ∈ R
N , ‖sk‖ = 1} ∀k = 1, . . . , K (2)

while powers take values in the set defined by the real interval
(0, Psup]

Pk = {pk|pk ∈ (0, Psup]} ∀k = 1, . . . , K (3)

where Psup is the maximum power value.
At the receiver a matched filter (MF) ck = sk is used to

obtain the decision variable dk for user k
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(4)

and the SINR for user k is expressed as

γk =
pk

s�k Rksk
(5)

where

Rk =

K∑
�=1,� �=k

p�s�s
�
� + W = R− pksks

�
k (6)
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is the correlation matrix of the interference-plus-noise seen by
user k and R = SPS

� + W is the correlation matrix of the
received signal in equation (1). We note that the presence of
the positive definite noise covariance matrix W ensures that
bothRk andR are also positive definite matrices.
We formally define the denominator of the SINR as the

user interference function

ik = s
�
k Rksk k = 1, . . . , K, (7)

and note that for a given user k this depends explicitly on
user k receiver filter sk as well as on all the other users code-
words and powers s�, p�, ∀� �= k, but does not depend on
user k’s power. We also note that similar interference func-
tions have been defined in other game-theoretic approaches to
power and codeword adaptation for uplink CDMA [4,5].
In this setup, individual users may adjust their codewords

and powers to meet a set of specified target SINRs {γ∗
1 , . . . ,

γ∗
k , . . . , γ∗

K} assumed admissible as defined in [7], and our
goal is to apply separable game theory to develop an adaptive
codeword optimization/power control algorithm.

3. JOINT CODEWORD AND POWER ADAPTATION
AS A NON-COOPERATIVE SEPARABLE GAME

A non-cooperative game is formally defined by a set of play-
ers, a set of strategies (or actions) associated with each player,
and an individual player cost function [8]. The game is non-
cooperative in the sense that a given player is interested only
in minimization of its individual cost function, without paying
attention to how its actions affect the other players.
For the uplink CDMA scenario in Section 2 the players

are the active users in the system, and their corresponding
strategies consist of updating their codewords and powers.
User strategy spaces are formally defined by equations (2)
and (3), and the cost function of a given user k is taken fol-
lowing [5] to be the product between the user power and its
corresponding interference function, that is

uk = pkik = pks
�
k Rksk ∀k = 1, . . . , K. (8)

This particular choice for the user cost function is separable
with respect to the two parameters that define the user strategy
– the corresponding codeword and power, and is motivated by
our goal of applying separable game theory. In this case the
separable game is formally defined as [5]:

The Non-cooperative Codeword adaptation and Power
control Game

NCPG = 〈K, {Sk × Pk}k∈K, {uk(·)}k∈K〉 (9)

where the components of the game are:

1. K = {1, . . . , K} is the set of players which are the
active users in the system.

2. Sk is the set of codeword strategies for player k in (2).

3. Pk is the set of power strategies for player k in (3).

4. uk : S × P −→ (0,∞) is the user cost function that
maps the joint strategy spaces S = S1 × . . .× SK and
P = P1× . . .×PK to the set of positive real numbers.

The NCPG consists of two distinct sub-games in which indi-
vidual users select their codeword and power update strategies
to minimize their corresponding cost functions.

3.1. The Codeword Adaptation Subgame

In this game, user powers are fixed, and individual users ad-
just only their codewords in their corresponding strategy spa-
ces (2) in order to minimize their corresponding cost func-
tion. Formally, the Non-cooperative Codeword adaptation
Game is defined as

NCG = 〈K, {Sk}k∈K, {uk(·)}k∈K〉 (10)

and in this case individual users select their codeword update
strategies to minimize their corresponding cost functions for
a given set of powers, that is

min
sk

uk|P=fixed ∀k = 1, . . . , K (11)

We note that the user cost function in equation (8) is a
quadratic form in the user codeword sk with symmetric posi-
tive definite matrix Rk and as a consequence is convex. This
implies that NCG is a convex game and using the same line of
reasoning as for concave games [9] one can easily show that
a Nash equilibrium point for NCG exists.
The best response of a given user k in terms of codeword

update strategies is obtained by solving the constrained opti-
mization problem of minimizing the user cost function subject
to unit norm constraints on the user codewords

min
sk

uk subject to s
�
k sk = 1 (12)

The solution is straightforward and implies that the best strat-
egy for user k is a greedy interference avoidance procedure
which minimizes the effective interference corrupting user k’s
signal at the receiver [6]. This consists of replacing the cur-
rent codeword by the minimum eigenvector xk of matrix Rk

and implies also that, at a Nash equilibrium, all user code-
words will be minimum eigenvectors of their corresponding
interference-plus-noise correlation matrices.
In order to test whether the minimum eigenvector strategy

is also optimal with respect to the constrained minimization
of user k cost function, we use the approach in [10, Ch. 3]
to find and test the sufficient Kuhn-Tucker (KT) condition.
This involves expanding the Lagrangian function in Taylor
series around the point satisfying the necessary KT conditions
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and neglecting higher order terms and leads to the following
relationship

Ds
k = (−1)

∣∣∣∣ 2pk(Rk − γ∗
kIN ) 2sk

2s�k 0

∣∣∣∣ (13)

which when Ds
k > 0, k = 1, . . . , K, implies that the corre-

sponding sk is also the constrained minimum of (12) and the
optimal Nash equilibrium of NCG.

3.2. The Power Control Subgame

In this game, user codewords are fixed and individual users
adjust only their powers in their corresponding strategy spaces
(3) in order to minimize their corresponding cost function.
The Non-cooperative Power control Game is formally de-
fined as

NPG = 〈K, {Pk}k∈K, {uk(·)}k∈K〉 (14)

and in this case individual users select their strategies to mini-
mize their corresponding cost functions for a given set of user
codewords, that is

min
pk

uk|S=fixed ∀k = 1, . . . , K (15)

We note that in this case the user cost function is linear
in pk, which is a particular case of convex function. This
implies that NPG is also a convex game, and as it was the case
with NCG, a Nash equilibrium for NPG always exists. In this
case the best response in terms of power updates is found by
solving the constrained optimization problem of minimizing
the user cost function subject to constraints on the user SINR:

min
pk

uk subject to pk = γ∗
ks

�
k Rksk (16)

whose obvious solution implies that the best user strategy in
this case is to update power to match the target SINR, that
is pk = ikγ∗

k . This best response strategy for NPG is also
optimal in this case since, following again [10, Ch. 3], we
have that Dp

k = 1 > 0 for all k = 1, . . . , K.

3.3. The Nash Equilibrium for NCPG

Using the result of Theorem 1 in [5] we note that a Nash equi-
librium solution for NCPG exists and is defined by codeword
matrix S and power matrix P if and only if S represents a
Nash equilibrium for NCG and P represents a Nash equilib-
rium for NPG. Since we have shown that both NCG and NPG
have Nash equilibria, we conclude that a Nash equilibrium
for NCPG also exists. This Nash equilibrium will be opti-
mal with respect to constrained minimization of the user cost
function if the sufficient conditions for optimality for code-
words in equation (13) are satisfied.
At the optimal Nash equilibrium all user codewords s∗k are

minimum eigenvectors of corresponding interference+noise

correlation matrices Rk. This further implies that MF and
MMSE receivers are equivalent and yield the same SINR, and
that the Nash optimal user codewords and powers form a gen-
eralized Welch Bound Equality (GWBE) ensemble [7].

4. INCREMENTAL UPDATE STRATEGIES IN THE
DIRECTION OF THE BEST RESPONSE

In order to get to a Nash equilibrium point active users in the
system may play their best response strategies in the two sub-
games – NCG and NPG. However, these strategies may lead
to new user codewords that are distant in signal space from
the current user codewords and/or to abrupt power changes
to meet the target SINRs. This behavior is not desirable in
the practical operation of a system as it may lead to increased
probability of error at the receiver or even connection loss be-
tween the transmitter and the receiver which may not able to
adapt to these sudden changes. From a practical perspective, a
more desirable approach is to change the user codewords and
powers in small increments, with corresponding incremental
changes of the receiver filter that follow the transmitter code-
word changes.
At a given instance t of the NCPG, an incremental code-

word update strategy for user k is defined by

sk(t + 1) =
sk(t) + mβxk(t)

‖sk(t) + mβxk(t)‖ (17)

where xk(t) is the minimum eigenvector of corresponding
matrix Rk and is the best response strategy for NCG, m =
sgn(s�k xk), and β is a parameter that limits how far in terms
of Euclidian distance the updated codeword can be from the
old codeword. This is an incremental interference avoidance
codeword update in the direction of the best response strat-
egy of the NCG which implies a decrease in the interference
function ik [6].
The incremental power update strategy adjusts user power

in small increments using a gradient-based approach in the
direction of the best response strategy pk = ikγ∗

k of the NPG
and is defined by

pk(t + 1) = pk(t)− μ [pk(t)− γ∗
kik(t)]

= (1− μ)pk(t) + μγ∗
kik(t)

(18)

with 0 < μ < 1. We note that equation (18) can be re-
garded as a “lagged update”, and the smaller the μ constant
is the more pronounced the lag in the power update is and the
smaller the incremental power change will be.

5. AN ADAPTIVE ALGORITHM FOR JOINT
CODEWORD UPDATE AND POWER CONTROL

Using the incremental strategies defined in the previous sec-
tion one can formulate an adaptive algorithm for joint code-
word update and power control in uplink CDMA systems.
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The input data for the algorithm consists of the initial user
codewords, powers, and desired (target) SINRs for active users
(matrices S and P, and values γ∗

1 , . . . , γ∗
K), the noise covari-

ance matrix W, the constants μ, β, and tolerance ε. The al-
gorithm is triggered if the SINR of active users with specified
codewords and power does not match the target SINRs, and
is formally stated below:
1. IF admissibility condition in [7] on target SINRs is sat-
isfied GO TO Step 4, ELSE STOP: the desired system
configuration is unfeasible.

2. IF change in cost function is bigger than ε for any user
GO TO Step 4, ELSE a Nash equilibrium has been
reached.

3. IF optimality condition in equation (13) is true STOP:
an optimal configuration has been reached, ELSE GO
TO Step 4.

4. FOR each user k = 1, . . . , K DO
(a) Compute current Rk(t) using equation (6) and

determine the minimum eigenvector xk(t).
(b) Update user k’s codeword using equation (17).
(c) Update user k’s power using equation (18).

5. GO TO Step 2.

We note that the check of the optimality condition in equa-
tion (13) performed at Step 3 ensures convergence of the algo-
rithm to the optimal Nash equilibrium point that corresponds
to a GWBE ensemble of user codewords and powers for which
target SINRs are achieved with minimum power [7].
Numerical results obtained from extensive simulations of

the algorithm show that the number of iterations needed to
reach convergence within some given tolerance depends on
the value of ε as well as on the algorithm constants μ and
β, but remains approximately the same for increasing num-
ber of users K and signal dimensions N such that the ra-
tio K/N is approximately constant. In Table 1 we summa-
rize the average number of iterations needed to reach con-
vergence from random initialization to a GWBE ensemble
of codewords and powers with specified target SINRs within
tolerance ε = 10−4 for algorithm parameters μ = 0.1 and
β = 0.2, and for different K and N values such that their
ratioK/N remains constant and equal to 5/4.

Table 1.
N K Average number of iterations
4 5 35
16 20 30
32 40 28
64 80 37
128 160 36

6. CONCLUSIONS

In this paper we applied separable game theory to develop
an adaptive algorithm for joint codeword optimization and
power control in uplink CDMA systems. The proposed al-
gorithm employs incremental updates in the direction of the
best strategy which are desirable in practical implementations
since they allow the receiver to follow codeword changes at
the transmitter with corresponding incremental changes of the
receiver filter and to continue detection of transmitted sym-
bols with high accuracy.
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