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ABSTRACT
Resource allocation is considered for cooperative transmissions in
multiple-relay wireless networks. Two auction mechanisms, SNR
auctions and power auctions, are proposed to distributively co-
ordinate the allocation of power among multiple relays. In the
SNR auction, a user chooses the relay with the lowest weighted
price. In the power auction, a user may choose to use multiple re-
lays simultaneously, depending on the network topology and the
relays’ prices. Sufficient conditions for the existence (in both auc-
tions) and uniqueness (in the SNR auction) of the Nash equilib-
rium are given. The fairness of the SNR auction and efficiency
of the power auction are further discussed. It is also proven that
users can achieve the unique Nash equilibrium distributively via
best response updates in a completely asynchronous manner.
Keywords: Wireless Networks, Relay Networks, Auction The-

ory, Power Control, Resource Allocation

1. INTRODUCTION
Cooperative communication (e.g., [1]) takes advantage of the broad-
cast nature of wireless channels, uses relay nodes as virtual an-
tennas, and thus realizes the benefits of multiple-input-multiple-
output (MIMO) communications in situations where physical mul-
tiple antennas are difficult to install (e.g., on small sensor nodes).
Although the physical layer performance of cooperative commu-
nication has been extensively studied in the context of small net-
works, there are still many open problems of how to realize its
full benefit in large-scale networks. For example, to optimize co-
operative communication in large networks, we need to consider
global channel information (including that for source-destination,
source-relay, and relay-destination channels), heterogeneous re-
source constraints among users, and various upper layer issues
(e.g., routing and traffic demand). Recently some centralized net-
work control algorithms (e.g., [2, 3]) have been proposed for co-
operative communications, but they require considerable overhead
for signaling and measurement and do not scale well with network
size. This motivates our study of distributed resource allocation
algorithms for cooperative communications in this paper.
In this paper, we design two distributed auction-based resource

allocation algorithms that achieve fairness and efficiency for multiple-
relay cooperative communication networks. Here fairness means
an allocation that equalizes the (weighted) marginal rate increase
among users who use the relay, and efficiency means an alloca-
tion that maximizes the total rate increase realized by use of the
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relays. Precise definitions of fairness and efficiency will be given
in Section 2. In both auctions, each user decides “when to use re-
lay” based on a locally computable threshold policy. The question
of “how to relay” is answered by a simple weighted proportional
allocation among users who use the relay.
In our previous work [4], we have proposed similar auction

mechanisms for a single-relay cooperative communication net-
work, where users can achieve the desired auction outcomes if
they update their bids in a synchronous manner. This paper con-
siders the more general case where there are multiple relays in
the network with different locations and available resources. The
existence, uniqueness, and properties of the auction outcomes are
very different from the single-relay case. Moreover, we show that
users can achieve the desirable auction outcomes in a completely
asynchronousmanner, which is more realistic in practice and more
difficult to prove. Due to the space limitations, all the proofs are
omitted in this conference paper.

2. SYSTEMMODEL AND NETWORK OBJECTIVES
As a concrete example, we consider the amplify-and-forward (AF)
cooperative communication protocol in this paper. The system
diagram is shown in Fig. 1, where there is a set K = (1, ...,K)
of relay nodes and a set I =(1, ..., I) of source-destination pairs.
We also refer to pair i as user i, which includes source node si and
destination node di.
For each user i, the cooperative transmission consists of two

phases. In Phase 1, source si broadcasts its information with
power Psi

. The received signals Ysi,di
and Ysi,rk

at destination
di and relay rk are given by Ysi,di =

√
Psi

Gsi,di
Xsi

+ ndi
and

Ysi,rk
=

√
Psi

Gsi,rk
Xsi

+ nrk
, where Xsi

is the transmitted in-
formation symbol with unit energy at Phase 1 at source si, Gsi,di

and Gsi,rk
are the channel gains from si to destination di and re-

lay rk, respectively, and ndi
and nrk

are additive white Gaussian
noises. Without loss of generality, we assume that the noise level
is the same for all links, and is denoted by σ2. We also assume
that the transmission time of one frame is less than the channel
coherence time. The signal-to-noise ratio (SNR) that is realized at
destination di in Phase 1 is Γsi,di

= Psi
Gsi,di

σ2 .

In Phase 2, user i can use a subset of (including all) relay
nodes to help improve its throughput. If relay rk is used by user
i, rk will amplify Ysi,rk

and forward it to destination di with
transmitted power Prk,di

. The received signal at destination di is
Yrk,di =

√
Prk,diGrk,diXrk,di+n′

di
,whereXrk,di = Ysi,rk

/|Ysi,rk
|

is the unit-energy transmitted signal that relay rk receives from
source si in Phase 1, Grk,di

is the channel gain from relay rk to
destination di, and n′

di
is the receiver noise in Phase 2. Equiva-

lently, we can write Yrk,di =
√

Prk,di
Grk,di

(
√

Psi
Gsi,rk

Xsi,di
+nrk

)√
Psi

Gsi,rk
+σ2

+

n′
di

. The additional SNR increase due to relay rk at di is
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Fig. 1. System Model for Cooperation Transmission

�SNRik =
Prk,di

Psi
Grk,di

Gsi,rk

σ2(Prk,di
Grk,di

+ Psi
Gsi,rk

+ σ2)
. (1)

The total information rate user i achieves at the output of maximal
ratio combining is

Rsi,di
(P r,di

) =
W log2 (1 + Γsi,di

+
∑

k �SNRik)∑
k∈K 1{Prk,di

>0} + 1
. (2)

Here P r,di
= (Prk,di

,∀k ∈ K) is the transmission power vector
of all relays to destination di, W is the total bandwidth of the
system, and 1{·} is the indicator function. Equation (2) includes a
special case where user i does not use any relay (i.e., Prk,di

= 0
for all k ∈ K), in which case the rate isW log2 (1 + Γsi,di

). The
denominator in (2) models the fact that relay transmissions occupy
system resource (e.g., time slots, bandwidth, codes). We write
Rsi,di (P r,di) to emphasize that P r,di is the resource allocation
decision we need to make, and it is clear that Rsi,di

depends on
other system parameters such as channel gains.
We assume that the source transmission power Psi

is fixed for
each user i. Each relay rk has a fixed total transmission powerPrk

,
and can choose the transmission power vector P rk,d � (Prk,d1 ,
..., Prk,dI

) from the feasible set

Prk
�

{
P rk,d

∣∣∣∣∣
∑

i

Prk,di
≤ Prk

, Prk,di
≥ 0,∀i ∈ I

}
. (3)

Finally, define P r,d = (P rk,d,∀k ∈ K) to be the transmission
power of all relays to all users’ destinations. The resource alloca-
tion decision we need to make is the value of P r,d.
From a network designer’s point of view, it is important to

consider both efficiency and fairness. An efficient power alloca-
tion P efficiency

r,d maximizes the total rate increases of all users, i.e.,

max
{P rk,d∈Prk

,∀k∈K}
∑
i∈I

�Ri (P r,di
) , (4)

where �Ri (P r,di
) denotes the rate increase of user i due to the

use of relays�Ri (P r,di
) = max {Rsi,di

(P r,di
) − Rsi,di

(0) , 0}.
In many cases, an efficient allocation discriminates against users
who are far away from the relay. To avoid this, we also consider
a fair power allocation P fair

r,d, where each relay rk solves the fol-
lowing problem

max
P rk,d∈Prk

∑
i

Prk,di
, s.t.

∂ � Ri (�SNRik)

∂ (�SNRik)
= ckqik · 1{Prk,di

>0},∀i ∈ I.

(5)

Here qik’s are the priority coefficients denoting the importance of
each user to each relay. When qik = 1 for each i, all users who
use relay rk have the same marginal utility ck, which leads to strict
fairness among users. In the special case where users are symmet-
ric and only use the same relay rk, the fairness maximizing power
allocation leads to a Jain’s fairness index [5] equal to 1. However,
the definition of fairness here is more general than the Jain’s fair-
ness index. Notice that a fair allocation is Pareto optimal, i.e., no
user’s rate can be further increased without decreasing the rate of
another user.
Since �Ri (P r,di

) is non-smooth and non-concave (due to
themax operation), it is well known that Problems (4) and (5) are
NP hard to solve even in a centralized fashion. Next, we will
propose two auction mechanisms that can solve these problems
under certain technical conditions in a distributed fashion.

3. AUCTION MECHANISMS
An auction is a decentralized market mechanism for allocating
resources without knowing the private valuations of individual
users in a market. Auction theory has been recently used to study
various wireless resource allocation problems (e.g., time slot al-
location [6] and power control [7] in cellular networks). Here
we propose two auction mechanisms for allocating resource in
a multiple-relay network. The rules of the two auctions are de-
scribed below, with the only difference being in payment determi-
nation.

• Initialization: Each relay rk announces a positive reserve
bid βk > 0 and a price πk > 0 to all users before the
auction starts.

• Bids: Each user i submits a nonnegative bid vector bi =
(bik, ∀k ∈ K), one component to each relay.

• Allocation: Each relay rk allocates transmit power as

Prk,di =
bik∑

j∈I bjk + βk
Prk

,∀i ∈ I. (6)

• Payments: User i pays Ci =
∑

k πkqik � SNRik in an SNR
auction or Ci =

∑
k πkPrk,di

in a power auction.
The two auction mechanisms that we propose are highly distributed,
since each user only need to know the public system parameters
(i.e., W , σ2 and Prk

for all relay k), local information (i.e., Psi

and Gsi,di) and the channel gains with relays (Gsi,rk
and Grk,di

for each relay rk, which can be obtained through channel feed-
back). The relays do not need to know any network information.
A bidding profile is defined as the vector containing the users’

bids, b = (b1, ..., bI). The bidding profile of user i’s opponents
is defined as b−i = (bj ,∀j �= i), so that b = (bi; b−i) . User i
chooses bi to maximize its payoff

Ui (bi; b−i, π) = �Ri (P r,di (bi; b−i)) − Ci (bi; b−i, π) . (7)

Here π = (πk, ∀k ∈ K) is the prices of all relays. It can be shown
that the values of the reserve bids βk’s do not affect the resource
allocation, thus we can simply choose βk = 1 for all k.
The desirable outcome of an auction is called a Nash Equilib-

rium (NE), which is a bidding profile b∗ such that no user wants
to deviate unilaterally, i.e.,

Ui

(
b∗i ; b

∗
−i,π

)
≥ Ui

(
bi; b∗−i, π

)
,∀i ∈ I, ∀bi ≥ 0. (8)
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Define user i’s best response (for fixed b−i and price π) as

Bi (b−i, π) =
{

bi

∣∣∣∣bi = arg max
b̃i≥0

Ui

(
b̃i; b−i, π

)}
, (9)

which can be written as Bi (b−i,π) = (Bi,k (b−i, π) ,∀k ∈ K).
An NE is also a fixed point solution of all users’ best responses.
Next we will consider the existence, uniqueness and properties of
the NE, and how to achieve it in practice. Although in general NE
is not the most desirable operational point from an overall sys-
tem point of view, we will show later that the two auctions indeed
achieve our desired network objectives under suitable technical
conditions.

3.1. SNR Auction
We first consider the SNR auction where user i’s payment is Ci =∑

k πkqik � SNRik.

Theorem 1 In an SNR auction with multiple relays, a user i ei-
ther does not use any relay, or uses only one relay rk(i) with the
smallest weighted price, i.e., k(i) = arg mink∈K πkqik.
Theorem 1 implies that we can divide a multiple-relay network

intoK + 1 clusters of nodes: each of the firstK clusters contains
one relay node and the users who use this relay, and the last cluster
contains users that do not use any relay. Then we can analyze
each cluster independently as a single-relay network as in [4]. In
particular, for a user i belonging to cluster k (i) ≤ K, its best
response function is

Bi,k

(
b−i,k, πk

)
=

{
fs

i,k (πk)
(∑

j �=i bj,k + βk

)
, k = k (i) ,

0, otherwise.
(10)

Note that user i’s best response is related only to the bids from
users who are in the same cluster. The linear coefficient fs

i,k (πk)
is derived as
fs

i,k (πk) = (11)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞, π ≤ πs
i ,

(Psi
Gsi,rk

+σ2)σ2

Prk
Grk,di

Psi
Gsi,rk

W
2πkqik ln 2−1−Γsi,di

−(Psi
Gsi,rk

+Prk
Grk,di

+σ2)σ2
, π ∈ (

πs
i , π̂s

i

)
,

0, π ≥ π̂s
i ,

where

πs
i � W/ (2qik ln 2)

1 + Γsi,di
+ Prk

Grk,di
Psi

Gsi,rk

(Psi
Gsi,rk

+Prk
Grk,di

+σ2)σ2

, (12)

and π̂s
i is the smallest positive root of the following equation in π

πqik (1 + Γsi,di)−
W

2

(
log2

(
2πqik ln 2

W
(1 + Γsi,di)

2

)
+

1

ln 2

)
= 0.

(13)
In the degenerate case where π̂s

i > πs
i , we have fs

i,k (πk) = ∞
for πk < π̂s

i and fs
i,k (πk) = 0 for πk ≥ π̂s

i . Notice that the linear
coefficient is determined based on a simple threshold policy, i.e.,
comparing the price announced by the relay with the two locally
computable threshold prices.
Now let us assume that all users use the same relay rk, then

from (6) and (10) we know that the total demand for the relay
power is

∑
i∈I

fs
i,k(πk)

fs
i,k(πk)+1Prk

, which can not exceed Prk
. It is

also clear that fs
i,k (πk) is a non-increasing function of πk. Then

we can find a threshold price πs
k,th such that

∑
i∈I

fs
i,k(πk)

fs
i,k(πk)+1 < 1

when πk > πs
k,th, and

∑
i∈I

fs
i,k(πk)

fs
i,k(πk)+1 ≥ 1 when πk ≤ πs

k,th.

Theorem 2 In an SNR auction with multiple relays, a unique NE
exists if πk > πs

k,th for each k.
Finally let us consider the property of the NE. For a single-

relay network, we show in [4] that the SNR auction achieves the
fair resource allocation (i.e. it solves Problem (5)) if at least one
user wants to use the relay at the threshold price πth. In the
multiple-relay case, however, some relays may never be able to
achieve a Pareto optimal allocation, which is a basic requirement
for a fair allocation. This is because if the relay announces a high
price, no users will use the relay. If the relay decreases the price,
there might be too many users switching to the same relay simul-
taneously such that an NE does not exist. On the other hand, we
can show the following:
Theorem 3 If there exists a NE such that each relay’s resource is
full utilized and each relay is used by at least one user, the corre-
sponding power allocation is fair (i.e., it solves Problem (5)).

3.2. Power Auction
Here we consider the power auction, where user i’s payment is
Ci =

∑
k πkPrk,di

. There are two key differences here com-
pared with the SNR auction. First, a user may choose to use mul-
tiple relays simultaneously here. User i’s best response can be
written in the following linear form: Bi,k (b−i,k,π) = fp

i,k (π)(∑
j �=i bj,k + βk

)
,∀k ∈ K. To calculate fp

i,k (π), user i needs to

consider a total of
∑K

l=0

(
K
l

)
cases of choosing relays. For exam-

ple, when there are two relays in the network, a user needs to con-
sider four cases: not using any relay, using relay 1 only, using relay
2 only, and using both relays. For the given relay choice in case
n, it calculates the linear coefficients fp,n

i,k (π) for all k in closed-
form (this involves threshold policy similar to the SNR auction)
and the corresponding rate increase �Rn

i . Then it find the case
that yields the largest payoff, n∗ = arg maxn �Rn

i , and sets
fp

i,k (π) = fp,n∗
i,k (π) ∀k. Second, the linear coefficient fp

i,k (π)
depends on the prices announced by all relays. For example, ei-
ther a large πk or a small πk′ (k′ �= k) can make fp

i,k (π) = 0, i.e.,
user i will choose not to use relay rk.
Similar to in the SNR auction, we can also calculate a thresh-

old price πk,th for relay rk. In this case, we assume that all re-
lays announce infinitely high prices except rk, and then calcu-
late πp

k,th such that
∑

i∈I
fs

i,k(πk)

fs
i,k(πk)+1 < 1 when πk > πp

k,th, and∑
i∈I

fs
i,k(πk)

fs
i,k(πk)+1 ≥ 1 when πk ≤ πp

k,th.

Colloary 1 In a power auction with multiple relays, there exists
an NE if πk > πp

k,th for each k.
On the other hand, necessary condition for existence of NE as well
as conditions for uniqueness are not straightforward to specify,
and are left for future research. We can characterize the property
of the NE as follows:
Theorem 4 If there exists a NE such that each relay’s resource is
full utilized and all users use all relays, the corresponding power
allocation is efficient (i.e., it solves Problem (4)).

3.3. Asynchronous Best Response Updates
The last question we want to answer is how the NE can be reached
in a distributed fashion. Since user i does not know the best re-
sponse functions of other users, it is impossible for it to calculate
the NE in one shot. In the context of a single-relay network [4],
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we have shown that distributed best response updates can globally
converge to the unique NE (if it exists) in a synchronous manner,
i.e., all users update their bids in each time slot simultaneously ac-
cordingly to bi (t) = fs

i (π)
(∑

l �=i bl (t − 1) + β
)

. In practice,
however, it would be difficult or even undesirable to coordinate all
users to update their bids at the same time, and the following can
be used:

Algorithm 1 Asynchronous Best Response Bid Updates
1: t = 0.
2: Each user i randomly chooses a bi (0) ∈

[
bi, b̄i

]
.

3: t = t + 1.
4: for each user i ∈ I
5: if t ∈ Ti then

6: bi,k (t) =
[
fs

i (π)
(∑

l �=i bl (t − 1) + β
)]b̄i,k

bi,k

,∀k.

7: end if
8: end for
9: Go to Step 1.

We show that asynchronous best response updates converges
in the multiple-relay case. The complete asynchronous best re-
sponse update algorithm is given in Algorithm 1 ([x]ba = max
{min {x, b} , a}.), where each user i updates its bid only if the
current time slot belongs to a set Ti, which is an unbounded set of
time slots and could be different from user to user. We make a very
mild assumption that the asynchronism of the updates is bounded,
i.e., there exists a finite but sufficiently large positive constant B,
and for all t1 ∈ Ti, there exists a t2 ∈ Ti such that t2 − t1 ≤ B.
Each user updates its bid at least once during any time interval of
lengthB slots. The exact value ofB is not important (as long as it
is bounded) for the convergence proof and needs not to be known
by the users.

Theorem 5 If there exists a unique nonzero NE in the SNR auc-
tion, there always exists a lowerbound bid vector b =

(
b̄i,∀i ∈ I

)
and an upperbound bid vector b̄ = (bi, ∀i ∈ I), under which Al-
gorithm 1 globally converges to the unique NE.

In practice, we can choose b to be a sufficiently small posi-
tive vector (to approximate zero bids from users) and b̄ to be a
sufficiently large finite vector.

4. SIMULATION RESULTS
For illustration purpose, we show the convergence of Algorithm 1
in a multiple-relay SNR auction. We consider a network with three
users and two relays. The three transmitters are located at (100m,-
25m), (-100m,25m) and (100m,5m), and the three receivers are
located at (-100m,25m), (100m,25m) and (-100m,5m). The two
relays are located at (0m,-2m) and (0m,0m). All the priority co-
efficients qik = 1. Since the first relay announces a price lower
than the second relay, all users choose to use the first relay. In
Fig. 2.a, we show the convergence of the users’ bids to the first re-
lay under synchronous updates, where each user updates its bid in
each time slot. The solid lines show the evolution of the bids and
the dotted lines show the optimal values of the bids after conver-
gence. In Fig. 2.b, we show the convergence under the same setup
with asynchronous convergence. Three users randomly and inde-
pendently choose to update their own bids in each time slot with
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Fig. 2. Bids update in an SNR auction (the same one relay).
probability 0.1, 0.5 and 1, respectively. We can see that the al-
gorithm converges to the same optimal values as the synchronous
update case but in longer time (as expected).

5. CONCLUSIONS
In this paper, a cooperative communication network with multiple
relays has been considered, and two auction mechanisms, the SNR
auction and the power auction, have been proposed to distribu-
tively coordinate the relay power allocation among users. Unlike
the single-relay case studied in [4], here the users’ choices of re-
lays depend on the prices announced by all relays. In the SNR
auction, a user will choose the relay with the lowest weighted
price. In the power auction, a user might use multiple relays si-
multaneously, depending on the network topology and the relative
relationship among the relays’ prices. A sufficient condition is
shown for the existence of the Nash equilibrium in both auctions,
and conditions are derived for uniqueness in the SNR auction. The
fairness of the SNR auction and the efficiency of the power auction
are also discussed. Finally, if an NE exists, users can achieve it in
a distributed fashion via best response updates in an asynchronous
manner.
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