
HARDWARE 3D GRAPHICS ACCELERATION FOR MOBILE DEVICES

Thomas J. Olson

Texas Instruments, Inc.

ABSTRACT

Mobile phone handsets are evolving rapidly from simple voice

communications terminals into portable multimedia computers.

Applications of these devices include photo and video capture and

display, stored or streaming media playback, web access, and 3D

video games. These applications, together with attendant

improvements in display quality and processing power, have

created a need for hardware graphics accelerators optimized for

mobile devices. This paper reviews the state of mobile 3D

graphics, focusing on factors driving adoption, standards, and

opportunities. It also discusses technical and practical challenges

that must be met to enable a lively and successful content industry.

Index Terms— Mobile 3D Graphics, M3G, OpenGL ES

1. INTRODUCTION

Over the next few years, hardware graphics acceleration in mobile

phones will go from a luxury found only in the most expensive

models to an expected feature of all but the most basic products.

This change is happening today, driven by the steady evolution of

handsets from voice communications terminals to personal digital

assistants and, ultimately, portable multimedia computers. The new

applications demand high-quality rendering on high resolution

displays, without large increases in power consumption or silicon

area. Hardware acceleration is necessary to meet these needs.

This paper reviews the current state of mobile graphics, with a

focus on general-purpose devices with relatively open architectures

rather than on closed or special-purpose platforms such as mobile

game consoles. The next section discusses factors driving the

adoption of mobile 3D hardware. The following sections discuss

the role of various types of graphics standards. Finally, the paper

discusses technical and practical (market-related) problems that

must be solved in order for mobile 3D graphics to achieve its

potential.

2. MOTIVATION

A number of forces are converging to drive the adoption of

hardware graphics acceleration in mobile phone handsets. These

include changing consumer expectations, emerging applications,

and changes in display size.

2.1. Changing Consumer Expectations

At the most abstract level, the driver for increasing use of graphics

hardware is changing consumer expectations for what mobile

phones should look like. In particular, the extensive publicity given

to the Apple iPhone™, Nokia N-series, and other smartphones has

had a major impact. Currently these are high-end products, but

consumers will demand a similar look and feel in mid-range

devices as soon as it is possible at a mid-range price.

2.2. New Applications

A second driver for the adoption of hardware graphics acceleration

is the emergence of new applications that can benefit from it.

These include:

Games – Mobile games are becoming a significant source of

revenue for operating companies in Europe and Asia, and revenues

are increasing in the Americas as well. While game developers

rightly point out that graphics is not required to provide good game

play, consumer expectations are strongly influenced by their

experience with PC and console games. The result is that graphics

and gaming are closely linked in consumers minds, and graphics

capabilities are a selling point for consumers interested in games.

User Interfaces – Even consumers who are uninterested in games

may be attracted by high-end ‘compositing’ user interfaces, which

are made possible through hardware graphics acceleration. This

capability has been available on the desktop for some years in

Apple’s Mac OS®, and is supported as an option in Microsoft’s

Windows Vista™. Again, the publicity given to Cover Flow™ on

the iPhone has shown that a 3D-based interface can be compelling,

even for applications such as music players where the need for

graphics is not immediately obvious. Demand for similar-looking

products is high, and compositing interfaces (or interfaces made to

look like them) are likely to penetrate the market quickly.

Vector Graphic Applications – Many applications can benefit

from high-quality display of 2D vector graphics, made popular

through web formats such as SVG and Flash®. These include, for

example, high-resolution mapping in GPS-enabled phones. Vector

graphic rendering has subtleties due to its use of complex

primitives (e.g. Bézier curves), specialized blend modes, and high-

quality antialiasing. Dedicated 2D vector accelerators are available,

but 3D accelerators can also be effective.

Multimedia – Multimedia applications such as video playback or

image browsing do not require 3D acceleration, but they can

benefit if it is present. 3D accelerators are adept at moving,

transforming, resampling, and combining image arrays efficiently.

Thus they are well suited to tasks like displaying translucent

playback controls superimposed on a live video playback window,

or making a playback window change size or transparency to allow

display of a calendar reminder.

2.3. Display Size

A final factor driving the adoption of graphics accelerators is the

steady increase in screen resolutions for mobile devices. Many

53441-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

phones sold today still have main screens with resolutions derived

in some way from QCIF (e.g. 176x220), but QVGA (320x240)

resolution is now common, and VGA (640x480) is becoming a

requirement in some markets.

As a practical matter, it is unlikely that handsets with

conventional form factors will adopt resolutions much higher than

VGA for their main screens, because a 2.2 inch VGA screen nears

the limits of human visual acuity. However, many high-end phones

are equipped with video ports allowing them to be connected to

external monitors. This allows the consumer to display images

taken with the handset camera on a high-quality display. This path

could lead to mobile phones with HDTV 1080p (1920x1080)

display capability within the next few years.

The implications of O(n
2
) growth in screen resolution will

make hardware acceleration mandatory well before HDTV

resolution is reached. Table 1 shows why. The table assumes that

30 frames-per-second (fps) rendering will be used for applications

requiring smooth motion, such as games, video playback, and user

interface animations, and that the phone’s central processor is

clocked at 200 MHz. The table gives the number of pixels per

second that must be rendered at various screen sizes, and then

translates that figure into the number of CPU cycles available to

generate each pixel. These numbers are optimistic, for a number of

reasons. First, the CPU cannot devote all of its cycles to pixel

processing; it must also run the operating system and device

drivers, process scene geometry, and execute the application.

These loads are highly application dependent, but it is not unusual

to have less than 50% of cycles available for pixel processing.

Second, in many applications pixels are written to more than once

per frame, a phenomenon called overdraw. This too is application

dependent, but overdraw multiples of 2x to 3x are common in 3D

games. These factors can easily cut the effective number of

available cycles per screen pixel by a factor of four to six.

A typical mobile CPU can render a basic (e.g. nearest-

neighbor, mipmapped, textured) pixel in on the order of twenty

cycles. Adding features such as bilinear texture filtering, blending,

and multisampling can increase that cycle count by an order of

magnitude. Comparing the number of CPU cycles required to paint

a pixel to the number of cycles available (Table 1) makes it clear

that the days of CPU-based rendering are numbered. A 200 MHz

CPU can be used for 3D rendering up to QVGA, but will be

heavily stressed at that screen size; applications will be limited in

the quality and complexity of the scenes they can render. At larger

screen sizes, high-end rendering in software is out of the question.

Making different assumptions about frame rate or CPU speed

change the picture, but only a little. Doubling the CPU clock to

400 MHz makes QVGA reasonable and HVGA possible, again

with significant compromises. But even a 1 GHz general-purpose

processor is marginal for rendering to a VGA screen, and higher

resolutions remain out of reach.

3. THE ROLE OF STANDARDS

Application Programmer Interface (API) standards play a critical

role in enabling the adoption of graphics hardware. Their most

obvious contribution is that they allow application code to be

portable across accelerators, or even between accelerated and non-

accelerated platforms. This increases the number of platforms that

can be targeted by a single application, reducing development cost

per potential customer. This is critical, especially early in the

adoption cycle when the number of accelerated platforms is small.

Table 1: Graphics Pixel Processing Requirements as a function of

screen size. Pix/sec are in millions, assuming 30fps rendering.

Cycles/pix assume a 200 MHz CPU.

A second, less obvious role of API standards is that they

provide a common definition for the functionality that graphics

accelerator designers should provide. Platforms that support the

standard benefit not only from portable content developed for the

standard, but from development tools, training, and support

oriented toward the standard.

3.1. Taxonomy of Mobile Graphics Standards

The most powerful handsets available today are quite capable of

running desktop API standards of recent vintage. However, mobile

phone execution environments and applications are very different

from the desktop, and the industry has found it worthwhile to

develop new, mobile-specific graphics standards. These standards

can be analyzed along several dimensions:

Low Level vs High Level – Low-level graphics APIs are designed

to expose as much as possible of the hardware functionality, while

still providing reasonable abstraction and portability. In these

immediate-mode APIs the application makes explicit calls to draw

primitive shapes such as points, lines, or triangles, and the

hardware (at least conceptually) draws them immediately. By

contrast, high-level or retained-mode APIs allow the application to

build highly structured representations of scenes (“scene graphs”),

potentially including temporal behavior. The application makes

calls to construct the scene and render it, and the API takes care of

breaking it down into hardware-renderable primitives.

In applications based on a low-level rendering API, the

application must provide the functionality that would otherwise be

provided by a high-level API, and must translate the high level

data structures into primitive draw commands. This is more work

for the application developer, but it has advantages in terms of

flexibility and efficiency. When this work is done in the

application, the code can be optimized for the application domain;

for example, a ideal scene structure for a war game might be quite

different from that for a flight simulator. A high-level API must

provide a general-purpose scene structure that can apply to any

domain, and this generality has a cost. For this reason, PC and

console games are usually written to use low-level APIs.

The dominant low-level API for mobile applications is

OpenGL ES [6][9], a mobile-oriented version of OpenGL [10],

which is the leading open standard for 3D rendering on

workstations and PCs. OpenGL ES differs from OpenGL in

discarding legacy and/or redundant functionality, and in adding

mobile-specific features such as fixed-point data types. On mobile

versions of Microsoft platforms, OpenGL ES competes with

Direct3D® Mobile [8], which is based on desktop Direct3D.

Size pix/frame Mpix/sec cycles/pix

176x220 38720 1.16 172.18

QVGA 76800 2.30 86.81

HVGA 153600 4.61 43.40

VGA 307200 9.22 21.70

WVGA 408960 12.27 16.30

720p 921600 27.65 7.23

1080p 2073600 62.21 3.22

5345

Java vs Native – Base language can have a significant impact on

API design. In many mobile phone execution environments, all

externally supplied applications must be written in Java™ and

applications delivered as native (binary) code are forbidden. The

primary motivation for this restriction is security; Java programs

can be prevented from damaging the system by the runtime byte

code interpreter. Security is less of an issue now that mobile phone

processors have begun to incorporate hardware memory protection

and modern operating system principles, but Java continues to

dominate in lower cost handsets.

Mobile Java implementations have historically suffered from

poor performance due to byte code interpretation, and from slow or

non-existent floating point support. This has motivated designers to

try to move sources of heavy computational load out of Java and

into native code libraries, where the same computation can be done

more quickly. In 3D games, scene graph manipulation and

rendering is such a load, so mobile graphics APIs for Java often

include high-level features. The “Mobile 3D Graphics” libraries,

M3G (JSR-184) [2][9] and M3G2 (JSR-297) [3], are examples.

There is also a low-level Java library, JSR-239 [4], which provides

a direct Java binding to OpenGL ES 1.1.

Currently, there are no standard high-level APIs for native

code execution environments, because programmers generally

prefer to code that functionality themselves. For those who do not,

it is possible to license native-code game engines from various

commercial vendors. These engines provide high-level

functionality which is typically specific to a class of games, and

hence is more efficient than a general-purpose high-level API.

Fixed Function vs Programmable – On the desktop, graphics

hardware has undergone a paradigm shift over the past decade.

First-generation graphics processors were conceptualized as fixed-

function hardware pipelines controlled by a large number of state

registers, and were programmed by setting register values and then

sending vertex data through the pipeline. In the new paradigm, the

pipeline is still present, but the most important fixed-function units

have been replaced by programmable processors that execute

programs written in specialized graphics programming languages.

In the mobile space, the transition to programmability is under

way but is not yet complete, so the APIs support a mix of

functionality. First generation APIs provide fixed functionality;

they include OpenGL ES 1.0 and 1.1, Direct3D Mobile, and the

Java standards M3G and JSR-239. The recently released OpenGL

ES 2.0 supports the programmable model, as does Java’s M3G2

(currently in definition).

It should be noted that as desktop graphics accelerators have

become more programmable, they have begun to be used for non-

graphics applications. This trend is likely to occur in mobile

devices too. Programmable graphics processors will increase the

floating point performance of mobile phone CPUs by several

orders of magnitude. Possible applications include geometric

reasoning for augmented reality, image processing and analysis,

and game physics.

4. TECHNICAL CHALLENGES

Mobile graphics is in some sense recapitulating the history of

graphics acceleration on the desktop, so it might seem that

technical solutions of a few years ago should be able to meet

today’s needs. There is some truth to this, but only some, for two

reasons. First, the mobile APIs have adopted modern graphics API

features (such as programmability) wherever possible, and older

APIs and architectures lack these features. Beyond that, mobile

platforms have constraints which are quite different from those of

desktop, line-powered devices, and these demand different

solutions. Two constraints that are particularly noteworthy are

power and memory bandwidth.

4.1. Power

Mobile devices are by definition battery-powered, and consumers

demand ever-increasing battery life. Thus the graphics solution

must compete for a slice of a constantly decreasing system power

budget. This is in marked contrast to desktop systems, where high-

end graphics cards commonly exceed the power that can be

delivered by standard expansion busses, and need auxiliary power

connectors. Mobile hardware graphics accelerators use far less

power to render a given scene than do general-purpose CPUs, but

they also encourage designers to make heavy use of graphical

features, so the graphics accelerator can still place a significant

load on the battery. Thus, minimizing power dissipation is a

critical challenge for mobile graphics accelerators.

Mobile graphics cores can of course benefit from standard

low-power design techniques. Clock gating (disabling the clock to

sections of the core that are idle) reduces dynamic (switching)

power. As static (leakage) power becomes more important, more

advanced techniques such as dynamic voltage scaling and power

gating become important. Power gating in particular has an impact

on graphics processor and driver design.

The rise of mobile graphics will create a need for more

fundamental approaches to lowering the power requirements of

graphics accelerators. In particular, reducing memory bandwidth

will be important, since off-chip memory accesses can consume

large amounts of power.

4.2. Memory Bandwidth

Mobile devices have memory bandwidth limitations that pose

severe problems for 3D graphics accelerators, even beyond the

power issue referred to in the previous section. Bandwidth is a

concern on the desktop as well, but there it is primarily a cost

issue, and all but the lowest of low-end graphics accelerators have

dedicated banks of graphics memory, typically accessed through

wide busses. The physical constraints of the handset form factor

discourage this approach in mobile devices, even if power were not

a problem. Advanced packaging techniques such as die-stacking

can help, but they add to cost and interfere with stacking other

components, such as system DRAM or the cellular modem.

Therefore, mobile graphics cores must be architected from the start

to minimize memory bandwidth.

 As a result of the memory bandwidth limitation, a number of

successful mobile graphics cores have adopted some form of tile-

based rendering architecture. In these systems, the frame buffer is

logically partitioned into disjoint regions. When the application

draws a triangle, the hardware does not actually render it. Instead,

it determines which regions the triangle will affect, and writes that

information into a database. When the application signals that the

frame is complete, the accelerator iterates over the regions. For

each regionm, it reads data for all of the triangles that affect the

region, and renders them into an on-chip SRAM buffer. When all

triangles for the region have been rendered, its pixels are written to

external memory and the next region is processed. This usually

reduces memory bandwidth, since most frame buffer references are

directed to on-chip memory. However, it requires each triangle to

5346

be read once for each tile it affects, so in geometry-heavy scenes it

can actually increase total memory traffic.

Mobile-specific architectures and rendering techniques remain

a fruitful research area. For example, Akenine-Möller and Ström

[1][11] have described interesting techniques for bandwidth-

efficient antialiasing, as well as a texture compression algorithm

that has been adopted as an optional extension to OpenGL ES [5].

Many interesting problems remain to be solved, and research

results are likely to find rapid application.

5. PRACTICAL CHALLENGES

Although there are challenges, from a technical point of view the

future of mobile 3D graphics is bright. Devices on the market

today rival video gaming consoles of only a few years ago, and

devices on the drawing board will bring a staggering level of

performance to handheld devices. The most difficult challenges

facing mobile graphics on the handset are not technical, but are

related to the structure and economics of the wireless industry.

5.1. Developer Education

Programming for hardware-accelerated graphics engines is a

specialized skill. Developers who have that skill generally learned

it in a desktop environment, where they did not have to contend

with the limitations of mobile devices. These limitations include

small memories, slow processors, lack of floating point, and quirky

development environments. Programmers who have worked with

video game consoles are generally better prepared for this than PC

developers, because video game consoles have many of the same

limitations. Still, graphics programmers moving into the mobile

industry need a period of retraining before they can be productive.

The situation is more difficult for mobile game programmers

whose previous experience has been with software-based graphics

running on general-purpose CPUs. With a software renderer, it is

perfectly reasonable to draw a scene by sending one triangle at a

time to the rendering API. Drawing triangles in larger groups is

more efficient, but the difference is usually small. With a hardware

accelerator, drawing one triangle at a time is slower than doing all

of the rendering in software. This is because graphics hardware is

organized as a very deep pipeline, which is intended to be only

loosely coupled to the CPU. This presents multiple challenges for

mobile graphics programmers; first, they have to learn a new and

difficult way of thinking about rendering and computation, and

then they have to discard or rewrite legacy software that is written

in the older, more synchronous style.

5.2. The “snowflake problem”

The biggest barrier to developing a large-scale market for mobile

phone applications of any kind is the diversity of execution

environments. Not only does every mobile phone handset present a

unique environment, but so does the same handset as delivered by

different network operators. Developers call it the “snowflake

problem”; no two handsets are alike. It is common for a large-scale

mobile game developer to maintain hundreds of distinct builds of a

single game. Minor differences can be handled via abstraction

layers and automated build systems, but many differences can only

be handled manually, and both approaches add cost.

The larger handset vendors and network operators have

established internal standards intended to provide portability within

their own product lines, but generally they have not been willing to

give up the perceived value of differentiating their platforms for

the theoretical value of creating a larger market.

The best hope for a solution to the snowflake problem lies in

open standards. OpenGL ES has largely solved the problem for

low-level 3D graphics, at least on devices with hardware

acceleration. Application vendors still have to contend with
different versions of the standard, and with different performance

levels on different handsets, but the situation is now no worse than

it is on the desktop. However, OpenGL ES does nothing to address

non-graphics-related differences between platforms.

The Khronos™ Group, the non-profit standards body which

oversees the evolution of OpenGL ES and OpenGL, has launched

an initiative called OpenKODE™ [7] to define an execution

environment for rich media applications that standardizes access to

operating system services, graphics, and multimedia. If it is widely

adopted, even as a ‘portability sandbox’ within a differentiated

environment, it promises to enable for the first time an

economically viable market for multimedia and graphics

applications on mobile devices.

6. REFERENCES

[1] T. Akenine-Moller and J. Strom, “Graphics for the Masses – A

Hardware Rasterization Architecture for Mobile Phones,” ACM

Transactions on Graphics, v.22 no.3 (Proc. ACM SIGGRAPH

2003), ACM Press, New York, pp. 801-808, July 2003.

[2] Java Community Process, “JSR-000184 Mobile 3D Graphics

API for J2ME”, http://jcp.org/aboutJava/ communityprocess/final/

jsr184/

[3] Java Community Process, “JSR 297: Mobile 3D Graphics API

2.0”, http://jcp.org/en/jsr/detail?id=297

[4] Java Community Process, “JSR-000239 Java Bindings for

OpenGL ES API”, http://jcp.org/aboutJava/communityprocess/

final/jsr184/

[5] The Khronos Group, “OES_compressed_ETC1_RGB8_

texture”, 2006, http://www.khronos.org/registry/gles/extensions/

OES/OES_compressed_ETC1_RGB8_texture.txt

[6] The Khronos Group, “OpenGL ES Overview”, 2007,

http://www.khronos.org/opengles/

[7] The Khronos Group, “OpenKODE Overview”, 2007,

http://www.khronos.org/openkode/

[8] Microsoft, “Direct3D Mobile”, 2007, http://msdn2.microsoft.

com/en-us/library/aa921056.aspx

[9] K. Pulli, T. Aarnio, K. Roimela, and J. Vaarala, “Designing

Graphics Programming Interfaces for Mobile Devices”, IEEE

Computer Graphics and Applications v. 25, no. 6, 2005, pp 66-75.

[10] M. Segal and K. Akeley, “The Design of the OpenGL

Graphics Interface”, Technical Report, Silicon Graphics Inc, 1994.

[11] J. Ström and T. Akenine-Möller, “iPACKMAN: High-

Quality, Low-Complexity Texture Compression for Mobile

Phones”, Proc ACM SIGGRAPH / EUROGRAPHICS Conf. on

Graphics Hardware, ACM Press, New York, pp. 63-70, July 2005.

5347

