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ABSTRACT

We consider the problem of emitter tracking using received signal
strengths (RSS)measured at a number of in-range access points (AP)
when some of the AP locations are unknown. This can be formu-
lated as a Euclidean distance matrix completion problem (EDMCP)
to which an iterative distributed weighted multidimensional scaling
(dwMDS) algorithm can be applied to simultaneously track emitters
and localize APs. The algorithm is illustrated using real-time data
collected by the University of California San Diego (UCSD) wire-
less topology discovery (WTD) project.

Index Terms— distributed multidimensional scaling, sparsity
constrained tracking, wireless mobility.

1. INTRODUCTION

Wireless localization and tracking has attracted tremendous inter-
est from a wide range of sectors such as security, ecology, property
control, and targeted marketing. Accurate location of targets can fa-
cilitate a number of location based services in these domains. For
example, in perimeter surveillance a network of RF sensors can be
used to estimate the location of intruders in the network. For retail
stores, these services can be used to locate equipment or inventory
in a warehouse or can advertise different products to users based on
their location in the store. The problem of estimating target locations
based on range information (e.g., RSS or time of arrival) has been an
active area of research during the last decade.

Mulltilateration can be used to locate energy emitting targets
based on the range information provided by the targets to multiple
APs or other receiving sensors. When there are many users or when
some of the locations of APs in range of the targets are not known,
the problem of estimating target locations can be formulated as an
Euclidean distance matrix completion problem. Previous approaches
for solving the EDMCP use semi-definite programming methods [1]
which are not scalable. In this paper, we propose to use the sparsity
penalized distributed weighted multidimensional scaling (dwMDS)
algorithm introduced in [2] to solve the EDMCP. Furthermore, we
show how this general solution can be applied to geo-localize the
unknown AP locations in the wireless network in addition to obtain-
ing target coordinates. We conclude with a tracking illustration of
our algorithm on real-time data sets from the WTD project at the
UCSD campus.

2. PROBLEM FORMULATION

The problem of multi-emitter tracking can be represented as follows.
Let {xi}

N
i=1 denote the unknown locations ofN users in the wireless

This research was partially supported by NSF grant CCR-0325571.

Fig. 1. Wireless users X and access points (AP) U are at unknown
positions while access points K are at known positions. Given mea-
sured distances between X and K, X and U, and K and K the Eu-
clidean matrix completion problem is to recover all pairwise dis-
tances between X, K and U.

network. APs in the network measure RSS values from these users.
Let {ki}

M
i=1 and {ui}

P
i=1 be the locations of the APs, where the first

M AP locations are known and the last P locations are unknown.
Denote the RSS measurements between target i and AP j as RSSi,j .
At any time, a target i is only in range of a small subset of the APs
and hence the matrix of RSS values is only partially known. Our goal
is to estimate the locations of the targets {xi} and the locations of
the unknown APs {ui} given these RSS measurements. A pictorial
representation of the problem is shown in Figure 1. The fundamental
question is: given the knowledge of connectivity (edges) of only
some edges of a Euclidean network, can one recover the connectivity
of the entire network?

3. PROPOSED SOLUTION

Denote the distance between emitter i and AP j as di,j . Here i ∈
{1, . . . , N} and j belongs to {1, . . . , M, M + 1, . . . , M + P} cor-
responding to the M known and P unknown APs. In many envi-
ronments it can be shown that the RSS is approximately log-normal
in its distribution [3], i.e., if the received RMS power Pi,j is in mil-
liWatts, then RSSi,j = 10 log10(Pi,j) is approximately Gaussian.
Thus RSSi,j in dBm is typically modeled as

RSSi,j ∼ N (RSS0 − 10np log

(
di,j

d0

)
, σ

2
0) (1)
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where σ0 is the standard deviation of the received power in dBm
and RSS0 is received power in dBm at a reference distance d0. The
constant np is referred to as the path-loss exponent and it depends
on the environment. We use single observation maximum likelihood
estimation to compute the range, di,j from RSSi,j . The maximum
likelihood estimator of di,j is given by

δi,j = d010
((RSS0−RSSi,j)/10np). (2)

The complete inter-point distance matrixD, called the Euclidean
distance matrix, is a symmetric matrix of the form

D =

⎛
⎝ Dkk Dkx Dku

Dxk Dxx Dxu

Duk Dux Duu

⎞
⎠ , (3)

whereDkk is the distance matrix between the known AP locations,
Dkx = D

T
xk is the distance matrix between the known AP locations

and the users, and the rest of the sub-distance matrices are similarly
defined. Among these sub-matrices, onlyDkk is completely known.
The distance matrices Dkx and Dux are partially known since dif-
ferent users are within range of only a fraction of the known and
unknown APs. For any matrix D define D

∗ as the matrix D with
some of its entries deleted and define ∗ as the matrix D with all of
its entries deleted. With this notation, if the exponent np is known
then the incomplete Euclidean matrix of distances can be recovered
from the noiseless RSS measurements

D
∗ =

⎛
⎝ Dkk D

∗

kx ∗
D
∗

xk ∗ D
∗

xu

∗ D
∗

ux ∗

⎞
⎠ . (4)

The objective is to reconstruct the complete distance matrix D

in (3) from the RSS measurements. Once D is recovered we can
recover the user tracks and unknown AP locations. We consider
two cases: (a) the exact completion problem, i.e., when the dis-
tances inD

∗ are available; (b) the approximate completion problem,
i.e., when only a noise contaminated version ofD∗ is available.

3.1. Exact completion problem

In the noiseless case (σ0 = 0) the problem of localizing the unknown
APs and the targets can be formulated as an Euclidean distance ma-
trix completion problem (EDMCP) [4]. This is a classical problem
in geometry and can be stated as the problem of recovering the set of
all pairwise distances between n points given only a subset of these
distances. A solution exists when a sufficient number of entries of
D are specified.

Specifically, let A = ((ai,j)) be an N × N partial distance
matrix in �m. Let G = (V, E) be an undirected graph with V =
1, 2, . . . , N , E = {(i, j) | ai,j is specified}, and whose specified
entries are chordal.

Definition: A graph is chordal if each of its cycles of four or
more vertices has a chord, which is an edge joining two nodes that
are not adjacent in the cycle.

Theorem 3.1. [4] Every partial distance matrix in �m, the graph
of whose specified entries is chordal, admits a completion to a dis-
tance matrix in �m. The matrix completion is unique if and only
if

B =

(
0 e

T

e A(S)

)
has rankm + 2 for any S ∈ S , (5)

where S is the collection of all minimal vertex separators of G, e is
a column vector of ones and A(S) is a matrix formed by using the
set of vertices in S.

A solution to the exact completion problem for an arbitrary known
set of partial matrix entries is not generally in closed-form [5]. A
special case for which a closed form solution does exist is given in
the following result.

Theorem 3.2. Let A be a (N + M) × (N + M) partial distance
matrix with rankm + 2 and the following structure:

A =

(
A11 A12

A21 A22

)
, (6)

where A11 is N × N , A12 is N × M , and A22 is an M × M

matrix. Given, A11,A12, there exists an unique Euclidean matrix
completion to A given by A22 = A21A

+
11A12 if rank(A11) =

m + 2.

Proof. The set of nonadjacent vertices for the partially complete dis-
tance matrix A defined in (6) is given by Nv = {(i, j) | N + 1 ≤
i, j ≤ N + M}. The corresponding collection of minimal vertex
separators of the graphG is a singleton set S = {1, 2, . . . , N}. This
guarantees that the graph associated with the entries ofA is chordal.
As N ≥ m + 2, B in (5) has rank m + 2 if A11 has rank m + 2.
Let r = m + 2. From Theorem 3.1, there exists a unique solution
to the exact completion problem. The eigendecomposition of A is
given by

A = VΛV
T
,

where Λ = diag(λ1, λ2, . . . , λr) andV = [v1, v2, . . . ,vr] are the
corresponding set of orthonormal eigenvectors. LetV = [VT

1 V
T
2 ]T ,

whereV1 isN × r andV2 isM × r. Then the sub-matrices can be
written as

A11 = V1ΛV
T
1

A12 = V1ΛV
T
2

A22 = V2ΛV
T
2

SinceA11 has rankm+2, the pseudo inverse ofA11 can be written
as

A
+
11 = V1(V

T
1 V1)

−1
Λ
−1(VT

1 V1)
−1

V
T
1 .

Then

A21A
+
11A12

= V2ΛV
T
1

(
V1(V

T
1 V1)

−1
Λ
−1(VT

1 V1)
−1

V
T
1

)
V1ΛV

T
2

= V2ΛV
T
2 = A22.

Theorem 3.2 does not apply when all the points yielding the par-
tial matrixA11 lie on am-dimensional sphere such that rank(A11)
ism + 1. It is easy to verify that a solution exists for this case using
Theorem 3.1, which is in fact unique, but Theorem 3.2 does not yield
the optimal completion.

This theorem can be applied to completion of the partial matrix
D
∗ defined in (4). Assume that rank(Dkk) ≥ m+2, which requires

the number M of known AP positions to be no less than m + 2.
Then a two step procedure recoversD fromD

∗ whenD
∗

kx andD
∗

ux

are completely known. First recover Dxx from Dkk and Dkx by
applying Thm. 3.2 to the upper left (M +N)× (M +N) submatrix
of D

∗. Then, plugging the solution of Dxx into its place in the
upper left (M + N) × (M + N) submatrix of D∗ solve for Duu

and Dku = D
T
uk together by a second application of the theorem.

Thus in this case all unknown entries in D can be recovered from
D
∗.
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3.2. Approximate completion problem

When only noisy measurementsA = D
∗+N of the partial distance

matrixD
∗ are available an approximation to the Euclidean distance

matrix D can be obtained by formulating a nonlinear least squares
problem. Let W be a symmetric weight matrix with nonnegative
elements, e.g.,wi,j = 1 if ai,j is given and zero otherwise. Consider
the Frobenius norm minimization

min
D

‖W ◦ (A −D)‖2
F s.t D ∈ D, (7)

where ◦ denotes the Hadamard product and D is the convex cone of
Euclidean distance matrices. The objective function can be rewritten
as

min
D

∑
i,j

wi,j (ai,j − di,j)
2
, s.t D ∈ D. (8)

A semi-definite programming solution to this problem is pro-
vided in [1] that does not scale well due to its high computational
complexity in the number of locations N + M + P . A lower com-
plexity iterative algorithm is the dwMDS algorithm of Costa [6] and
it directly yields location estimates by minimizing the equivalent ob-
jective function over location vectors zi:

min
Z

∑
i,j

wi,j (ai,j − ‖zi − zj‖)
2
, (9)

where Z = [k1, . . . ,kM ,x1, . . . ,xN ,u1. . . . ,uP ] is the set of M

known positions ki of the APs, the set ofN unknown user positions
xi, and the set of P unknown AP positions uj . As in standard MDS,
the solution to (9) is not unique since rotations and translations of the
location matrix leave the objective function invariant. However, by
constraining the positions ki to be equal to the known AP positions
(anchor nodes), as long as these known AP positions do not lie on a
plane or a line, a unique solution can often be found [6].

The dwMDS algorithm was reformulated in [7], [2] for target
tracking by introducing a sparsity penalty on changes in the user
part ({xi}) of the solution to (9) over time. This sparse dwMDS al-
gorithm is a distributed iterative procedure that can be implemented
in a decentralized in-network manner. Furthermore, the associated
weights wi,j can be selected to emphasize more accurate RSS mea-
surements and de-emphasize others. We adopt a two-step version of
the dwMDS procedure to successively localize the unknown users
and APs that mimics the two step exact matrix completion procedure
discussed above. First dwMDS is implemented to recover tracks
{xi} without using the RSSs measured with respect to the unknown
AP’s (U in Figure 1) then, substituting the estimated track locations
into the partial distance matrix we rerun dwMDS to recover the un-
known AP locations {ui}.

4. APPLICATION TO UCSD WTD DATA

4.1. UCSD wireless trace data

The wireless topology discovery (WTD) project1 was undertaken by
researchers at UCSD [8]. The project collects data on dynamic char-
acteristics and user behavior in a real world wireless network. The
primary objective of the WTD project was to test and develop reli-
able routing protocols in a geographically constrained wireless net-
work. To collect data, 275 UCSD freshman were given HP Jordana
PDAswhich were equipped with symbol 802.11 compact flash cards
and the WTD data collection software. The software recorded all

1http://sysnet.ucsd.edu/wtd/
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Fig. 2. Campus map showing the 200 known AP locations. Only the
horizontal (x,y) part of the 3D coordinates (x,y,z) is shown. In ad-
dition to these locations, there were 100 APs at unknown locations.
Also shown is a sample RSS data from a single user to APs. The
sensed APs by the user are indicated in blocked red along with their
RSS measurements.

APs sensed by the user every 20 seconds. The trace data were col-
lected over a 11 week period and then transferred to a centralized
database for analysis. The data indicated that around 300 APs were
sensed over this time among which only 200 of them had knowledge
about their locations.

The trace data collected consists of the following information:
user identity, sample time, AP identity, RSS, and AC/battery power
indicator. The coordinates of the known APs were also provided in
the database. Our objective was to recover user trajectories over time
and to reconstruct the network topology (locations of the unknown
APs) using available data. The map of the known AP locations on
the UCSD campus and the data samples at a particular time instant
for a single user are shown in Fig. 2. The APs sensed by the user are
shown as filled circles. The corresponding RSS values (2, 6, 27) are
shown next to these APs.

To reconstruct the user trajectories, we need to estimate user
locations over time based on measured RSS at the various access
points. The RSS values provided in the database were 5-bit quan-
tized values between 0 and 31. Since the mapping from these quan-
tized values to the actual signal strength in dB is unknown, we needed
to calibrate the quantized numbers to signal strength values. This
was performed using an iterative least squares procedure that yielded
the best linear fit between the quantized values and the correspond-
ing RSS value in dB [9].

5. SIMULTANEOUS LOCALIZATION OF TARGETS AND
APS

First, we consider all users that sense at least 4 known APs and one
unknown AP. Using only the knowledge of the RSS values between
the users and the known APs, we estimate the locations of the users
in the network. We then use the set of user locations with the cor-
responding RSS values to the unknown APs to estimate the location
of the unknown APs. As a validation of our two stage dwMDS al-
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Fig. 3. Location estimates of three known APs that were made un-
known to the two stage dwMDS algorithm and the corresponding
uncertainty ellipses. Only horizontal coordinates of the 3D coordi-
nate estimates are shown.

gorithm for localization of targets and APs we performed the fol-
lowing experiment. We randomly choose a small set of known APs
K and added them to the set U of unknown APs. We reconstruct
the location of the APs in the augmented set U using different user
trajectories in the sparsity penalized dwMDS algorithm of [2]. The
knowledge of some of the locations in the augmented set U allows
us to indirectly measure the RMS error of the reconstruction of the
unknown AP locations (see Fig. 3).

In Fig. 3, the known AP locations in the augmented U set are
indicated by filled circles. The mean estimates of the APs are shown
as triangles. The black ellipse is the standard error ellipse for the
unknown AP location. The error in the mean estimate of the AP
location is roughly 30m. We would like to emphasize that these
results were obtained despite the following limitations: inaccurate
model (np may vary from one link to another), 5 bit quantization
of the RSS, low sampling rate (one sample every 20 seconds), and
measurement noise. The actual estimated locations of the unknown
APs are shown in Fig. 4. The known AP locations are indicated as
circles while the location estimates of the unknown APs are shown
as triangles. These result indicate that dwMDS can perform robust
geo-localization even in the absence of information about some of
the links.

6. CONCLUSIONS

In this paper, we considered the problem of multitarget localization
and tracking in a sensor (AP) network having some unknown sensor
locations. For the case where there is no noise in the RSS measure-
ments we formulated this problem as a Euclidean distance matrix
completion problem (EDMCP) and proposed a two step exact com-
pletion algorithm to recover the complete pairwise distance matrix
between all sensors and targets under some conditions on the rank
of the distance matrix. The target positions and the unknown sensor
(AP) locations can be recovered from the completed distance ma-
trix up to a rotation and translation. We then showed how a two
stage constrained dwMDS algorithm can be implemented to directly
recover the unknown locations. The sparsity constrained dwMDS al-
gorithm was illustrated for tracking wireless PDA users in the UCSD
WTD data set.

We intend to explore the following possibilities to improve upon
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Fig. 4. Location estimates of the unknown APs are shown in red.
The known AP locations are shown in blue.

the localization performance in the UCSDWTD data set. (1) to per-
form multiple local fits to the RSS model rather than a single global
fit. This would allow us to adaptively fit the log-normal model for
each AP based on its relative location in the network. (2) to include
side information, e.g., smoothness of user trajectories or topographic
maps of the UCSD campus.
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