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ABSTRACT

This paper examines structured methods to perform multichannel
estimation for underwater acoustic communication networks. Much
of the receiver/protocol design for cooperative communications
requires channel state information at the receiver. The proposed
multichannel estimation algorithm exploits relationships between
the multipath channels of cooperating transmitting nodes to a des-
tination node. A simplified channel model is proposed from a
geometry-based ray-tracing model. From an approximation of the
channels between the relays and the destination, an iterative scheme
is derived. The proposed method exploits the sparse nature of un-
derwater acoustic channels and in so doing improves performance
over unstructured methods. The efficacy of the proposed method is
evaluated via simulations, i.e. comparing the mean-square error of
the estimated channel with its Cramer-Rao bound.

Index terms - cooperative systems, multipath channels, under-
water acoustic communication, sparse channels, multichannel equal-
ization

1. INTRODUCTION

Underwater sensor networks form an emerging technology paradigm
that promises to enable or enhance several key applications in
oceanic research, such as: data collection, pollution monitoring,
tactical surveillance and disaster prevention [1]. Cooperative com-
munication with multihopping for terrestrial sensor networks has
been extensively studied enabling power savings and improved fi-
delity. Cooperation gains can be achieved via simple maximal ratio
combining [2] or distributed space-time coding schemes [3]. An
end-to-end probability of bit error analysis for multihopping and
cooperation in underwater acoustic networks was provided in [2].
Due to the severe channel conditions, significant gains (orders of
magnitude) over single hop communication is possible. However,
[2], [3] require channel state information at the receiver.

Given the strong performance gains achievable through the use
of cooperative communications in an underwater communications
environment, we seek to develop channel estimation methods to sup-
port the practical implementation of such schemes. Our approach is
based on the presumption that cooperating nodes will be physically
closer to each other than they are to the destination node. Using
the multipath model in [5], we can make some assumptions about
the nature of the multipath experienced between the cooperating and

This work has been supported in part by NSF NRT ANI-0335302, NSF
ITR CCF-0313392, NSF OCE-0520324 and NSF GRFP.

Fig. 1. Topology for two-hop cooperative communications network
with four cooperating nodes.

destination nodes. We show for the ranges and topologies under con-
sideration that we can assume that the multipath profile is common
to each cooperating sensor-destination node pair modulo an initial
delay. It is with this structure that we develop maximum likelihood
(ML) based profile estimators which are then used to drive a least-
squares channel coefficient estimation procedure. To estimate the
multipath profile, we assume essentially fast-fading channels and
exploit this to develop our algorithms. In contrast, the unstructured
case assumes no presence of a multipath profile and estimates the
channel directly from the received signal and training sequence.

Our proposed model neglects some subtleties regarding under-
water acoustic propagation, such as ray bending, surface scattering,
and non-white ambient noise (see [4]). The objective is to employ
a model which enables the exploitation of structure in channel es-
timation. To this end, we seek a model which will (1) yield high
performance channel estimation and (2) provide broad insights. We
show that despite our simplifying assumptions, our channel model
captures a significant amount of the channel energy for the topolo-
gies of interest.

This paper is organized as follows. In Section II, the signal
model for cooperative underwater acoustic communication is intro-
duced. Section III reviews approximations supporting geometry-
based multichannel models. In Section IV, channel estimation algo-
rithms are derived, followed by comments on performance bounds
in Section V. Lastly, simulation results are provided in Section VI.

2. SIGNAL MODEL

Our signal model is motivated by approximations made on the ray-
tracing model for the multipath profile provided in [5]. We consider
the topology depicted in Figure 1. A single source communicates to

53001-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



Fig. 2. Multipath reflections in a shallow-water environment based
on [5]. a and b are the transmitter and receiver heights, h is the
ocean depth, L is the transmission distance and the reflection types
are labeled as in [5].

a set of cooperating relays, which then transmit to a common des-
tination node. The channel estimation problem for the first hop is
essentially a set of single channel estimation problems. This is simi-
lar to that studied in [6] with the exception of topology having nodes
spaced along a vertical array whereas here we assume a horizontal
array of nodes each of which is at the same depth. Due to the many-
to-one nature of the second hop, we have a multichannel estimation
problem at the destination node.

We assume pulse matched filtering and sampling at the destina-
tion node. For simplicity of exposition, we assume that the maxi-
mal delay spread of the farthest node is known at the receiver. The
discrete time vector equivalent signal corresponding to the channel
output of a common single sequence from all cooperating nodes is
given by,

r′ = B

K∑
k=1

hs
k + n = BCh + n, (1)

where B is the lower triangular Toeplitz matrix with b as the first
column, and b is the M × 1 common transmitted sequence from
the K cooperating nodes. The multipath channel associated with
sensor k and the destination is given by the sparse vector hs

k. The
non-zero components are modeled as mutually independent complex
Gaussian random variables; furthermore, hs

k and hs
l are mutually

independent for k �= l. C = [Dτ1S0, D
τ2S0, · · · , DτK S0] where

Dτ is a Nh×Nh downshifting matrix with shift τ and S0 is a Nh×
Nh selection matrix with the zero-padded Np×1 common multipath
profile, p, along its diagonal. Nh is an upper bound on the overall
channel delay spread. The common multipath profile assumption
will be justified in the following section. We assume, without much
loss of generality, that 1 < τ1 < τ2 < ... < τK < Nh − Np,
thus each delay is distinct. We use the convention that D0 = I.

h =
[
hT

1 , hT
2 , · · · , hT

K

]T
, where hk is modeled as N (0, I). Now

consider the post-processed received signal

r = Binvr′ = Ch + Binvn (2)

where Binv is the left-inverse of B. r is of dimension Nh. The
ambient channel noise is complex Gaussian, i.e. n ∼ N (0, σ2I)
where n is an M × 1 vector.

3. MULTICHANNEL APPROXIMATION

The multipath channel effects of the individual links are modeled us-
ing the results from [5]. A recreation of the model is shown in Figure
2. The multipath delays are determined by the speed of sound and
the path lengths, and the multipath profile amplitudes are inversely
proportional to path length and decay exponentially in the number of
reflections. This property of decaying profile amplitudes may be use-
ful in multichannel detection; however, for purposes of tractability,

Fig. 3. Energy captured using a common profile for all cooperating
links. The node spread is the overall length of the horizontal array
of cooperating nodes

this paper examines the scenario where the components of the mul-
tipath profile, p, are zero and one. It is important to note that from
the standpoint of inter-symbol interference, such a channel would be
more severe than the typical decaying profile found in underwater
acoustic channels, thus making this problem worth investigating.

Given the topology of Figure 1 and assuming that the ocean
floor is uniform across the cooperating links, then the only parame-
ter varying the individual multipath profiles is the transmission dis-
tance. In order to use the model provided in Section II, these indi-
vidual multipath profiles must be able to be described by a single
common profile. Figure 3 provides an example of how well this can
be achieved. As can be seen from Figure 3, the common profile is
able to capture a significant amount of the overall energy, even with
node spreads comparable to the transmission distance.

4. CHANNEL ESTIMATION

4.1. Multipath profile estimation

Given the channel model outlined in Equations (1)-(2), we define c
as

c
.
= diag

(
E{rrH}

)
= diag

(
CCT + σ2BinvBH

inv

)
(3)

=

(
K∑

k=1

D̃τk

)
p + σ2

diag(BinvBH
inv) (4)

where D̃τ is the Nh×Np downshifting matrix of shift τ . Observing
the noise contributions for c, it can be readily noticed that the noise
depends on the transmitted sequence. To minimize the energy of the
effective noise, we must optimize the transmitted sequence such that

B∗
inv = arg min

Binv

{
Tr
(
BinvBH

inv

)}
. (5)

Through exhaustive searches over several symbol rates, it has been
found that B∗

inv is achieved when bi = 1, for all i. Using this trans-
mitted sequence, B∗

inv has 1’s along the main diagonal for the first
Nh − 1 rows, −1’s along the first diagonal below the main diagonal
and 1/(M − Nh + 1) along the last row in the final M − Nh + 1
columns. From here forward, we consider Binv = B∗

inv .
Motivating our iterative multipath profile estimation scheme is

the fact that we have two simple, but alternative characterizations of
the vector c,

c = Q(a)p + σ2
diag(BinvBH

inv) = R(p)a + σ2
diag(BinvBH

inv),
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where Q(a) =

K∑
k=1

D̃τk ,

R(p) =
[
D̃0p, D̃1p, · · · , D̃Nh−Npp

]
,

and ai =

{
1 if i = τk

0 else
.

Our procedure will be to alternate between estimating p and a using
the descriptions above. Thus, with an initial estimate of p, we form
R(p̂) which enables the estimation of a. We then form Q(â) to
refine our estimate of p and so forth. In practice, however, c will be
approximated by a sample average,

ĉ =
1

N

N∑
j=1

diag
(
rjr

H
j

)
(6)

=
1

N

N∑
j=1

diag
([Chj + Binvnj

] [Chj + Binvnj

]H)
.(7)

Since C is a zero-one matrix having at most K ones in a given row,
the i’th element of ĉ is a chi-square random variable with distribution

fĉi(x) =
1

(k + σ2
i )N/22N/2Γ(N/2)

xN/2−1e−x/2(k+σ2
i )

(8)

where k = 0, 1, . . . , K and σ2
i

.
= σ2|rowi(Binv)|2. We will adopt

the notation ĉi ∼ χN (k + σ2
i ) to denote ĉi having the above distri-

bution.
To obtain an initial estimate of p, we will assume Np is known.

Given that τ1 is the smallest value in {τk}K
k=1, ĉτ1 ∼ χN (1 + σ2

τ1)
and ĉi ∼ χN (σ2

i ) for all i < τ1. Forming a maximum likelihood
detector between the channel plus noise and noise only case yields
the following estimate for τ1:

τ̂1 = arg min
τ

{ĉτ ≥ Δ1,τ} , Δ1,τ = σ2
τ (1 + σ2

τ ) ln

(
1 + σ2

τ

σ2
τ

)
.

The initial estimate of p can then be found via

p̂
(1)
i+1 =

{
1, ĉi+τ̂1 ≥ Δ1,i+τ̂1 , i ∈ {0, 1, . . . , Np − 1}
0, else

Having p̂(1), let us consider the unconstrained least squares estimate
of a

a′ = arg min
ã

{∥∥c−R(p̂)ã
∥∥2
}

=
[
RT (p̂)R(p̂)

]−1

RT (p̂)c.

In spite of ĉ having a colored noise process, the sparsity of p causes

RT (p)ĉ to have statistically independent elements. Since the num-
ber of cooperating nodes, K, is given a priori and a is a zero-one
vector with K ones, a reasonable method for constraining a′ is to set
the K largest values of a′ to one and floor the remaining terms to
zero. Therefore, the final estimate of a is given as

â
(n)
i =

{
1, i ∈ {τ̂k}K

k=1

0, else

where {τ̂k}K
k=1 is the set of indices of a′ which have the K largest

values.
Now consider the unconstrained least squares estimate of p, i.e.

p′ = arg min
p̃

{∥∥c−Q(â)p̃
∥∥2
}

=
[
QT (â)Q(â)

]−1

QT (â)c.

Similar to the argument used for â, the sparsity of a causes QT (a)ĉ
to have statistically independent elements. However, p is a zero-one
vector where the number of ones in p is not known a priori. Thus,

a binary hypothesis test can be employed to threshold p′ to create p̂.
Let us assume that |τk − τi| ≥ Np for all i �= k. This condition is
satisfied using the topology in Figure 1 if

√
L2 + d2 − L ≥ νNpTs

where d is the internode spacing, ν is the speed of sound and Ts is
the sample time. This simpifies p′ = 1

K
QT (â)ĉ. Given the form of

Binv , it can be found that

p′
i ∼ 1

K
χKN ((k + 2σ2)/KN)

where k = 0, 1 for the noise only and noise plus channel cases,
respectively. Using ML detection, we obtain the threshold Δ2 =
2σ2(1 + σ2) ln((1 + 2σ2)/2σ2). Therefore

p̂
(n)
i =

{
1, p′

i > Δ2

0, else
(9)

One can now iterate between p̂(n) and â(n) until a stable point is
reached. These parameters can then be used directly to form the

estimate of C, denoted Ĉ.

4.2. Channel tap estimation

Here we describe two methods of channel tap estimation: unstruc-
tured and structured. We first note that the channel output in (1) can
be rewritten as

r′ = Bhs + n = B

K∑
k=1

hs
k + n

The unstructured least-squares estimate of hs is given by

ĥ
u

= arg min
h̃

{
‖r′ −Bh̃‖2

}
= Binvr′ = r (10)

In contrast, if we know the multipath profile, we can perform struc-
tured estimate of hs, obtaining

ĥ = arg min
h̃

{
‖r′ −BĈh̃‖2

}
=
[
ĈT BHBĈ

]†
ĈT BHr. (11)

The notation † corresponds to taking the pseudo-inverse. Note that
hs = Ch. Therefore, we obtain the structured estimate of hs via

ĥ
s

= Ĉ
[
ĈT BHBĈ

]†
ĈT BHr.

5. COMMENTS ON PERFORMANCE BOUNDS

Our performance metric of interest is the mean-squared error,

MSE = E
{
‖ĥx − hs‖2

}
, where x = {s, u} corresponding

the structured and unstructured estimates, respectively. Under the
assumption of known multipath profile and sensor relative delays,
it is straightforward to show that both estimator strategies yield
unbiased estimates with respect to their different signal models.
Similarly, it is straightforward to calculate the Cramer-Rao bounds
on the estimation error variances:

CRBU = σ2
[
BHB

]−1

and CRBS = σ2
[
CT BHBC

]†
(12)

Note that CRBU is of dimension Nh ×Nh and CRBS is of dimen-
sion KNh ×KNh. The aggregate bound is given by trace [CRBx]
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Fig. 4. MSE and CRB for structured and unstructured channel es-
timators. Model parameters: a = b = 10 meters, h = 30 meters,
c = 1500 m/s, f = 10kHz, L = 4km, Node Spread = 650, 900 and
1100 meters.

for x ∈ {U, S}. Due to the form of B, we then have trace [CRBU ] =
2Nhσ2. To provide some intuition as to how much improvement
the structured approach can achieve, consider the special case noted
above where |τk − τj | ≥ Np for j �= k. For the typically sparse
channels we observe in underwater acoustic systems, w(p) � Nh,

where w(p) denotes the weight of p. Here, CT C = IK ⊗ S0, which
has Kw(p) eigenvalues of 1 and the rest of which are 0. There-

fore, CT BHBC contains Kw(p) of the Nh non-zero eigenvalues of

BHB. This implies trace [CRBu] ≥ trace [CRBs]. Thus the perfor-
mance improvement has the potential of being very significant with
the structured approach.

6. SIMULATION RESULTS

Simulations were conducted to analyze the performance of the struc-
tured LS estimation scheme versus the unstructured LS estimation
scheme. In these simulations, the following parameter values were
used: ocean depth of 30 meters, transmitter and receiver depths of
20 meters, sound speed of 1500 m/s, wind speed of 10 knots, car-
rier frequency of 10kHz and the topology of Figure 1 with the hor-
izontal array of 3 nodes located 4km from the receiver. In this sim-
ulation, we consider the cooperating nodes equally spaced over a
total distance of 650 meters. The results are shown in Figure 4,
where the structured MSE and structured CRB curves achieve the
lowest values in the figure and the unstructured MSE and unstruc-
tured CRB curves are marked with diamonds. It is readily observed
that the structured estimate has a performance gain of several dB
over the unstructured estimate, caused by the highly sparse channel.
Additionally, it should be noted that the structured estimate MSE
achieves its CRB, and thus is efficient. This is due to the fact that the
multipath profiles of the individual channels are identical, meaning
our model is entirely accurate.

Let us now consider cases where the multipath profiles of the
individual links differ slightly. This can be achieved with the same
parameters as the previous simulation, except with a total node
spread of 900 meters. The simulation results are shown in Figure 4,
where the structured CRB curve lies directly on top of the structured
MSE and CRB curves for the 650 meter experiment, the structured
MSE curve lies just above its CRB curve, and the unstructured

curves being marked with triangles. Here, the multipath profiles
differ slightly. The algorithm still yields significant gain over the
unstructured case, but it detects non-existent taps as well as the
existing taps. Hence it is not able to achieve its CRB. In the final
simulation the node spread is 1100 meters. Again, the structured
CRB curve for this experiment lies on top of the those for previous
experiments, but the structured MSE curve, marked with circles,
quickly floors and the unstructured curves are marked with dots.
Here, the multipath profiles differ enough so that the algorithm is
not longer able to detect all the channel taps. Therefore, the struc-
tured MSE is limited to a floor equal to the channel energy that it
is unable to capture. However, there is still significant performance
gain relative to the unstructured case at low signal-to-noise ranges.
Since underwater sensor networks have very limited energy sources
and high maintenance costs, the low SNR regime is very important.
This result of significant gain at low SNR thus provides much reason
for use of the multichannel estimation algorithm.

7. CONCLUSIONS

In this paper, an investigation of a channel estimation scheme for a
cooperative underwater acoustic link is conducted. A simple itera-
tive estimation scheme which exploits the sparseness and similarity
of channels from cooperating nodes is derived. It is demonstrated via
simulations and performance bounds that large performance gains
can be achieved using this structured LS channel estimate over an
unstructured LS estimate. Ongoing research is examining an analy-
sis of the decaying profile of shallow-water channels, a derivation of
the optimal choice of b, analysis of the convergence behavior of this
iterative scheme, as well as a rigorous analysis of optimal estima-
tion methods for simplified cooperative underwater acoustic channel
models.
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