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ABSTRACT

With the proliferation of inexpensive digital signal processors

and high-quality audio codecs, microphone arrays and associ-

ated signal processing algorithms are becoming more attrac-

tive as a solution to improve audio communication quality.

For room audio conferencing, a circular array using modal

beamforming is potentially attractive since it allows a single

or multiple beams to be steered to any angle in the plane of

the array while maintaining a desired beampattern. One po-

tential problem with circular arrays is that they do not allow

the designer to have control of the spatial response of the ar-

ray in directions that are normal to the array. In this paper we

propose an augmented circular microphone array that allows

one to have some control of the vertical spatial response of

the array. A second-order system was built and measured.

Index Terms— microphones, arrays

1. INTRODUCTION

Circular microphone arrays are an attractive solution for au-

dio pickup of desired sources that are located in the horizon-

tal plane of the array. An efficient beamforming approach

is based on a cylindrical spatial harmonic decomposition of

the soundfield [1]. This solution allows one to represent the

beampattern in the horizontal plane as a frequency invariant

series in complex exponentials. However, the beampattern in

the vertical plane (out of the plane of the array) is frequency

dependent and the sensitivity from directions out of the hor-

izontal plane can become larger than the sensitivity for the

look-direction. In this paper, we suggest that adding a single

sensor in the center of the circle adds a degree of freedom

to the beamformer that allows one to control the beampattern

in the vertical direction by achieving a frequency invariant

beampattern for this direction. Although we only demonstrate

the technique for a second-order differential array, it can be

extended to any order in a straightforward way.

To begin, we initially provide a brief review of the har-

monic decomposition approach and then demonstrate the un-

desired impact of modal beamforming aliasing in terms of

spherical harmonic modes and how this aliasing negatively

impacts the spatial response of the beamformer. We then

show how one can cancel the aliased mode by adding the

center element. Finally, we provide an overview of a proto-

type microphone array design along with some measurements

from an array that was built to test and experimentally verify

the theory.

2. HARMONIC DECOMPOSITION BEAMFORMING
FOR CIRCULAR ARRAYS

Beamforming based on a spatial harmonic decomposition

of the sound-field [2, 3] has many appealing characteristics

some of which are: computationally simple steering, beam-

pattern design based on an orthonormal series expansion and

the independent control of steering and beamforming. For

a circular array the natural coordinate system is cylindrical.

However, since the three-dimensional beampattern of a mi-

crophone array is of main interest, it is instructive to use the

spherical coordinate system to analyze the spatial response

of the array. Using a spherical coordinate system instead of a

cylindrical coordinate system provides better insight into the

impact of modal aliasing to the vertical response of cylindri-

cal arrays. Spherical harmonics Y m
n (ϑ, ϕ) are functions in

the spherical angles and are defined as [4],

Y m
n (ϑ, ϕ) =

√
2n + 1

4π

(n − m)!
(n + m)!

Pm
n (cos ϑ)eimϕ, (1)

where Pm
n are the associated Legendre functions of order n

and degree m, ϑ is the angle in elevation and ϕ is the azimuth

angle. The acoustic pressure at a point (a, ϑs, ϕs) on a (vir-

tual) spherical surface due to a plane wave impinging from

direction (ϑ, ϕ) can be written in spherical coordinates as [4]

as,

p(a, ϑs, ϕs) = 4π

∞∑
n=0

injn(ka)
n∑

m=−n

Y m
n (ϑ, ϕ)Y m∗

n (ϑs, ϕs).

(2)

In Equation 2 jn represents the spherical Bessel function of

order n. Using Equation 2, one can write the output of a

continuous circular array lying in the horizontal plane with a
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sensitivity describing a complex exponential angular function

with spatial frequency m′ as,

ym′(a, ϑ, ϕ) =
1
2π

∫ 2π

0

4π

∞∑
n=0

injn(ka) ×
n∑

m=−n

Y m
n (ϑ, ϕ)Y m∗

n (π/2, ϕs)eim′ϕsdϕs

= 4π
∞∑

n=0

injn(ka)Y m′
n (π/2, 0)Y m′

n (ϑ, ϕ) (3)

Equation 3 shows two important characteristics: (a) the

pattern in the horizontal plane follows a complex exponen-

tial which is implicitly included in the spherical harmonic of

degree m′ and implies that the far-field pattern of the circu-

lar array is equivalent to the sensitivity weighting used on the

circle. (b) In the ϑ-direction the pattern is a superposition of

spherical harmonics of multiple orders. These two proper-

ties are the main features that are used in the analysis of the

augmented circular array and will be analyzed in more detail

later.

A continuous array is not practical since it would only al-

low us to extract one complex spatial circular harmonic. To

allow a more flexible beamformer design it is preferable to

sample the circular array at discrete locations. By discreetly

sampling the acoustic aperture, a general matrix beamformer

allows simultaneous extraction of multiple spatial harmonics

of the incident sound field. These extracted spatial harmonic

signals can then be used by a second beamformer processing

stage to linearly combine the spatial harmonic outputs and

yield a desired output beampattern or multiple simultaneous

beampatterns. These beampatterns are controlled simply by

adjusting the weights in the linear combination of the under-

lying spatial harmonic signals (also referred to as eigenbeams

or eigenmodes).

3. ANALYZING THE MODAL ALIASING OF A
CIRCULAR ARRAY

From Equation 3 it can be seen that the aliasing of the spa-

tial complex harmonic m′ related to any circular mode de-

pends on two factors: (1) the frequency invariant component

Y m′
n (π/2, 0) which is depicted in Figure 1, and (2) the fre-

quency dependent response jn(ka) which is shown in Figure

2.

In Figure 1 the order and degree of a specific mode is

translated into a ”beam index”: n(n + 1) + m + 1 to allow

the easy visualization of the higher order aliasing contribu-

tion for the desired fundamental eigenbeams (or equivalently

eigenmodes). To assist the visualization some thicker lines

are added in the plot to separate different orders n. The y-

axis represents the desired modes while the x-axis provides

all the modes present in a soundfield. Both axes are limited

to reasonable orders. Each black square represents a contribu-

tion by the corresponding mode. The exact level of the contri-

bution can be computed from the value of the corresponding

factors Y m′
n (π/2, 0) and are within 1-2dB of each other. The

desired eigenbeams are represented on the diagonal starting

from the origin. Note that not all modes on the diagonal are

extracted. The ones that are not picked up are the modes that

do not contribute to a pattern in the horizontal plane. The

patch at position (1, 1) in Figure 1 shows the contribution of

mode n = 0, m = 0 to the desired eigenbeam n = 0, m = 0.

In addition to this desired eigenmode one will also extract the

mode n = 2,m = 0 which is represented by the patch at

location (7, 1) and further higher order modes of degree 0.

In general, the patches on the diagonal x = y represent the

desired components while all other patches represent modal

aliasing terms. Note that Figure 1 contains no information

about the frequency dependence of the spatial aliasing.
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Fig. 1. Mode strengths for fundamental and aliased modes for

a continuous circular array.

As mentioned previously, the other important aspect to

take into account for the spatial aliasing is the frequency de-

pendency of the modes given by the spherical Bessel function

(compare Equation 3). This function is plotted in Figure 2

where it can be seen that the zero-order mode is essentially

flat over the lower frequencies and the higher-order modes

have high-pass responses with order equal to the mode order.

This response is similar to what was shown for spherical ar-

rays [2] and is also well known for differential arrays [5].

Combining the results shown in Figure 1 and Figure 2 one

can observe two problems: (a) modal aliasing, with the first

one occurring with mode Y 0
2 contributing to the desired fun-

damental mode Y 0
0 . Due to the frequency response of the sec-

ond order mode its aliasing contribution is negligible at low

ka but becomes dominant above ka = 2. Similar aliasing

exist for other modes. (b) Another problem is that due to sin-

gularities (zeroes) in the response, not all modes are available

at all frequencies. Singularities in the modal response of the

eigenbeams can have a serious impact on allowing a beam-

former to attain a desired beampattern at the frequency of the

singularity and at frequencies near this singularity. Thus, in

order to enable the beamformer to utilize all of the degrees

of freedom required to realize a general n-th order beampat-

tern, it is necessary to eliminate the singularity problem. It

has been shown that one way to avoid this problem is the use

directional microphones [6] or to place the microphones on
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the surface of a rigid baffle [3, 7] which essentially gives the

microphones a directivity in the horizontal plane. Both so-

lutions have their own drawbacks: It is well known that di-

rectional microphones are typically less well-matched com-

pared to omnidirectional microphones. Also one has the un-

desired added complexity of accurately placing and adjusting

the radial orientation of the elements where great care must

be given to how both sides of the microphone are ported to

the soundfield. Using a baffle can be visually obtrusive. Fi-

nally, and most importantly, both approaches don’t solve the

aliasing problem and with it comes the loss of beampattern

control in the vertical direction for a circular array.

In the next section, it is shown that by simply adding a

single additional omnidirectional microphone in the center of

the circular array, both problems can be reduced. First, the

occurrence of the first singularity can be avoided and sec-

ond, the aliased second-order harmonic can be extracted sep-

arately. With these two problems addressed, the resulting

second-order microphone array can be steered in the hori-

zontal plane with full horizontal and vertical control over the

beampattern, while also extending the usable bandwidth of

the beamformer.
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Fig. 2. Spherical mode strength jn(ka) for a circular array.

4. CIRCULAR ARRAY WITH CENTER ELEMENT

To gain full control over the beampattern, one must separate

the aliased modes. For a second-order system with a band-

width of ka < π, one needs to isolate the Y 0
2 mode from

the Y 0
0 mode. Note that at about ka = 3 there is also no-

table aliasing from the Y ±1
3 mode into the Y ±1

1 which will be

tolerated for this analysis. The separation of the eigenmodes

is accomplished by adding an omnidirectional microphone at

the center of the circular array. Using Equations 2 and 3, a

single omnidirectional microphone in the center of the circu-

lar ring has the spherical harmonic response

y0(0, ϑ, ϕ) = 4πj0(0)Y 0
0 (π/2, 0)Y 0

0 (ϑ, ϕ). (4)

Note that this result uses the fact that the spherical Bessel

function for argument 0 is zero for all orders larger than 0.

The additional center microphone gives access to the ”true”

or non-aliased zero-order mode which can be used to separate

the aliased zero-order mode formed by summing the perime-

ter microphones. By appropriately combining the two outputs

one can isolate the second-order mode by adjusting the zero-

order level:

αy0(0, ϑ, ϕ) − y0(a, ϑ, ϕ)=j2(ka)Y 0
2 (π/2, 0)Y 0

2 (ϑ, ϕ)(5)

⇒ α = j0(ka)

Thus, the addition of a single microphone in the center of the

circle enables one to have full control over the second-order

pattern steered in the horizontal plane and it extends the us-

able frequency range for a second-order system by about an

octave. Constructing a beamformer geometry that contains all

modes allows one to achieve the maximum directional gain,

or equivalently, a Directivity Index (DI) of 9.5 dB. Without

access to all eigenbeams of all orders, a modal beamformer

based on the linear combination of the eigenbeams is not ca-

pable of achieving maximum DI. What is even worse is that

above ka = 2 the second-order eigenmode dominates the

m = 0 mode and therefore significantly increases the array

sensitivity in the z-axis (normal to the array)which can be a

significant problem if one has an undesired noise source im-

pinging from this direction.

The method described above can be extended to higher

orders by using concentric rings of microphone arrays instead

of a single sensor in the center.

The approach according to Equation 5 has one drawback:

Implementing a filter with a response j0(ka) can be costly. A

reasonable compromise would be to use the center element

to generate a horizontal second-order torus pattern, with a

null in the ±z-direction (normal to the plane of the circular

array). A toroid pattern can easily be achieved by appropri-

ately subtracting the result given in Equation 3 (for m′ = 0)

from Equation 4. Conceptually this can be seen by assum-

ing a plane wave impinging from ϑ = 0 (along the z-axis):

Since the integrated sensitivity of the ring can be made equal

to the sensitivity of the center element the output of these two

subtracted signals is a second-order torus pattern.

Using the torus pattern instead of the Y 0
2 pattern results in

a slight decrease in maximum DI. However, it does not have

any effect on the pattern design in the horizontal plane and the

overall (horizontal and vertical) pattern remains frequency-

invariant.

5. MEASUREMENTS

A seven element circular array consisting of common-off-the-

shelf electret microphones with a radius of 2.0 cm was con-

structed to test the augmented circular array beamformer de-

sign. Figure 3 shows the geometry of the array. The micro-

phones were flush mounted into the top surface of a puck-like
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housing. The housing has a radius of 3 cm and a height of 2.5

cm.

Fig. 3. Seven-element circular microphone array geometry

with a center element.

Figure 4 shows measured beampatterns in the horizontal

plane for the array steered to 30 degrees at a few frequencies

which the beamformer was designed to operate. The beam-

pattern was designed to have a beamwidth of approximately

100 degrees. The white-noise-gain (WNG) [8] of the array

was constrained to be greater than a value of -15 dB, so the

array beampattern is constrained to first-order below 1 kHz

as can be seen in the figure. The concentric rings in the di-

rectivity plot are in 10 dB increments. At 1 kHz the beam-

pattern is a combination of first and second-order since this

frequency is at the crossover from first to second-order due to

the WNG constraint. As mentioned, Figure 4 shows only the

response in the plane of the array. The array was also mea-

sured in the vertical plane. However, it turns out that the re-

sult is non-instructive since the diffraction of the microphone

housing becomes the dominating effect in the pattern above

2kHz. Nevertheless, the maximum sensitivity is maintained

towards the look-direction.
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Fig. 4. Measured beampattern in the horizontal plane steered

at 30◦ at frequencies from 500 to 7 kHz.

6. CONCLUSION

A wide-band steerable second-order circular microphone

has been presented along with an underlying efficient modal

eigenbeamformer structure. It was shown by the use of a

spherical harmonic expansion that higher-order modes can

significantly limit the frequency range of operation of the

array. Specifically, it was shown that one can control unde-

sired vertical beampattern sensitivity due to modal aliasing

of higher-order eigenmodes by adding microphones to the

array. For the case of a second-order array, it was shown that

placing a single extra microphone at the center of the array

allows one to remove modal aliasing of higher-order modes

and thereby extend the usable frequency range of the beam-

former and also allow control of the vertical spatial response

by achieving a frequency invariant beampattern of a circular

microphone array.
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