
DETECTION AND LOCALIZATION OF MULTIPLE WIDEBAND ACOUSTIC SOURCES
BASED ONWAVEFIELD DECOMPOSITION USING SPHERICAL APERTURES

H. Teutsch

Multimedia Technologies Research Department
Avaya Labs

233 Mt Airy Rd, Basking Ridge, NJ 07920, USA
teutsch@research.avayalabs.com

W. Kellermann

Multimedia Communications and Signal Processing
University of Erlangen-Nuremberg
Cauerstr. 7, 91058 Erlangen, Germany

wk@LNT.de

ABSTRACT

This paper discusses novel methods for detecting and localizing mul-
tiple wideband acoustic sources using spherical apertures. In con-
trast to traditional methods the techniques presented here are not
based on processing the output of individual microphones directly.
Instead, the microphone signals are used to decompose the wave-
field into its spherical harmonics which are subsequently used as a
basis for novel frequency-independent multiple-source localization
and detection methods.

Index Terms— Spherical microphone arrays, wavefield decom-
position, spherical harmonics, source localization, source detection

1. INTRODUCTION

Spherical microphone arrays offer an ideal tool for capturing and
analyzing three-dimensional wavefields. Consequently, researchers
have been spending considerable effort to advance this relatively new
and emerging technology [1, 2, 3, 4], thereby focusing mostly on the
design and analysis of spherical microphone arrays as well as on
beamforming. In all of the above references, the analysis of wave-
fields by spherical microphone arrays is not based on processing the
sensor signals directly but rather on an orthonormal decomposition
of the wavefield into spherical harmonics. In addition to the ele-
gance of the mathematical framework, one of the main advantages
of performing the analysis in the new ’modal’ domain is the fact
that the frequency-dependent components are decoupled from the
angular-dependent components. This advantage over traditional ar-
ray processing algorithms allows for a “fresh look” on related array
processing problems such as source localization and detection. The
number and position of wideband acoustic sources are of interest
for, e.g. acoustic surveillance and for applications based on wave-
field analysis and beamforming as a preprocessing step. In [5], the
concept of using spherical harmonics for the localization of multi-
ple wideband acoustic sources is introduced. This paper extends the
analysis and provides simulations demonstrating its estimation per-
formance. In addition, a source detection method is discussed.

The remainder of this paper is organized as follows. Section 2
describes the wavefield decomposition process using spherical aper-
tures. Sections 3 and 4 detail the localization and detection methods,
respectively. Finally, conclusions are drawn in Section 5. As a nota-
tional convention throughout this paper, all symbols in normal type-
set denote scalar quantities while symbols and underlined symbols
typeset in boldface are vector and matrix quantities, respectively.
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Fig. 1. Planar wave front impinging on a spherical aperture.

2. WAVEFIELD DECOMPOSITION

The model of a planar wave front impinging on a spherical aperture
of radiusR is shown in Fig. 1. A farfield source, S, generates a plane
wave with wavenumber vector k at the observation point, Q, on the
surface of the sphere.

Any square-integrable function on the sphere can be expanded
into a series of spherical harmonics, see e.g. [6]. One such function
is the plane wave measured on the surface of the sphere which can
therefore be represented as (see e.g. [1])

eikT
r

˛̨
˛̨
r=R

= 4π

∞X
n=0

injn(kR)

nX
m=−n

Y m
n (θ, φ)Y m

n (ϑ, ϕ)∗, (1)

where i2 = −1, jn(kR) is the n-th order spherical Bessel function,
where k = ||k|| is the wavenumber, and where the asterisk, ’∗’,
denotes complex conjugation. Furthermore,

Y m
n (θ, φ) �

s
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4π
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(n + m)!
P m

n (cos θ) eimφ, (2)

are the spherical harmonics of order n and degreemwith P m
n (cos θ)

being defined as the associated Legendre polynomial [6]. Applying
the spherical Fourier transform [7] to Eq. (1), i.e. calculating the
plane wave response of a pressure sensitive spherical aperture, re-
sults in the Fourier series expansion coefficients for a plane wave as
[8]

F m
n (kR, ϕ, ϑ) =

√
4πinjn(kR)Y m

n (ϑ, ϕ)∗. (3)
Note that the frequency- and angular-dependent Fourier coefficients
in Eq. (3) are commonly referred to as ’eigenbeams’ [1].
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3. EIGEN-BEAM BASED SOURCE LOCALIZATION

In this section it is shown how the eigenbeams in Eq. (3) can be used
to estimate the direction of arrival (DOA) of multiple plane waves
impinging on the surface of the sphere.

The algorithm is based on a recurrence relation for associated
Legendre polynomials [6], i.e.

2m cot ϑP m
n (cos ϑ) = (m − n − 1)(n + m)P m−1

n (cos ϑ)

− P m+1
n (cos ϑ).

(4)

Note that this particular recurrence relation is based on a fixed order
n of the associated Legendre polynomials.

To arrive at an algorithm that can be implemented on a digital
signal processor, the infinite series in Eq. (1) needs to be truncated
to a finite n = N . As a result, one obtains 2N + 1 eigenbeams for
each order N . Now, let F (kR, ϑ, ϕ) define a manifold vector for
fixed order n = N as

F (kR, ϑ, ϕ) = [F−N
N , F−N+1

N , . . . , F 0
N , . . . , F N

N ]T , (5)

where the superscript ′T ′ denotes transposition. Note that here and
in the following functional dependencies have been dropped for no-
tational convenience.

Now, three vectors of length 2N−1 are extracted from the vector
in Eq. (5) as

F
(l)(ϑ, ϕ) � Δ

(l)
D0F (ϑ, ϕ), l = [−1, 0, 1], (6)

where Δ
(−1), Δ

(0), and Δ
(1) extract the first, middle, and last

2N − 1 elements fromD0F (ϑ, ϕ) with

D0 = diag{(−1)N , . . . , (−1)0, 1, . . . , 1N}. (7)

It can be shown that by considering I plane waves impinging
on the spherical aperture, the recurrence relation, Eq. (4), can be
expressed as

D1F
(0) = D2F

(−1)
Φ + D3F

(1)
Φ

∗, (8)

where

F
(l) = [F (l)(ϑ1, ϕ1) | F (l)(ϑ2, ϕ2) | . . . | F (l)(ϑI , ϕI)], (9)

with l = [−1, 0, 1] and

Φ = diag{μ1, . . . , μI}, (10)

where
μι = tan ϑι · e−iϕι , ι = 1, 2, . . . , I. (11)

Also, with integer −(N − 1) ≤ ν ≤ (N − 1)

D1 = 2 diag{|ν| · aν
N},

D2 = diag{(ν − N − 1) · (N + ν) · aν−1
N },

D3 = diag{a−(N−2)
N , . . . , a0

N ,−a1
N , a2

N , a3
N , . . . , aN

N},
(12)

where am
N = [(2N + 1)/(4π) · (N − m)!/(N + m)!]−1/2.

The remainder of the algorithm is very similar to the standard
ESPRIT multiple-source localization method introduced in [9].

There, a signal subspace matrix is estimated by extracting the I
principal eigenvalues from the power spectral density matrix [8]

S
XX

= F S
SS

F
H + S

N N
, (13)

where S
N N

is the matrix containing the noise power spectral densi-
ties. The matrix containing the signal power spectral densities, S

SS
,

comprises both the desired sources as well as strong directional in-
terferers. The superscript ′H ′ denotes the Hermitian operation.

Since, similar to the conventional array manifold matrix for sen-
sor arrays, the eigenbeam manifold matrix

F � [F (ϑ1, ϕ1) | F (ϑ2, ϕ2) | . . . | F (ϑI , ϕI)], (14)

is related to the signal subspace matrixUS by a non-singular matrix
T , it follows that U (l)

S = Δ
(l)US , l = [−1, 0, 1].

The power spectral density matrix, Eq. (13), is estimated based
on the decomposed output (spherical eigenbeams) of the spherical
aperture. Equation (8) can then be expressed as

D1U
(0)
S = E

»
Ψ

T

Ψ
H

–
, (15)

where,

E = [D2U
(−1)
S | D3U

(1)
S ], (16)

Ψ = T
−1

ΦT . (17)

By solving Eq. (15) in a total least-squares sense [10], an estimate
forΨ can be obtained. Finally, by realizing that the complex eigen-
values ofΨ are the entries ofΦ, the azimuth of the impinging plane
waves, ϕι, ι = 1, 2, . . . , I , can be readily identified by the phase
value of these eigenvalues. Similarly, the DOA in elevation, ϑι, sim-
ply correspond to the inverse tangent of the magnitude of the eigen-
values, see Eq. (11). Several observations are of interest. Firstly,
the number of spherical harmonics to be extracted from the wave-
field must satisfy the relation N ≥ I + 1. Secondly, source lo-
calization using eigenbeams obtained by wavefield decomposition
along the surface of a spherical aperture is inherently frequency-
independent which exhibits a significant advantage over ’traditional’
ESPRIT and other subspace-based multiple-source localization al-
gorithms. This result is a direct consequence of the fact that the
frequency-dependent terms in F , i.e. jN (kR), cancel in Eq. (8).

For a real-world implementation, of course, one needs to sam-
ple the surface of the sphere at discrete microphone positions. Many
sampling schemes have been recently proposed in the literature, see
e.g. [1, 3, 4, 8, 11]. In the following only one particular sampling
scheme is considered, i.e. the so-called ’t-design’ [11] method em-
ployingM = 32 microphones.

Figure 2 exemplifies the variance of the estimation error for one
specific source-sensor-room scenario of the two-source (uncorre-
lated bandlimited white noise) DOA estimation algorithm in azimuth
and elevation, respectively. Note that only the results for source 1
are reproduced. The results for the second source are very simi-
lar and provide no new insight. It is obvious that the variance of
the estimator for spatially uncorrelated noise fields is significantly
larger than the ideal estimator, i.e. the Cramer-Rao lower bound
(CRLB) for spherical apertures [8]. Before interpreting the results
in Fig. 2 it should be noted that the CRLB is really only meaning-
ful for unbiased estimators in spatially uncorrelated white noise. A
major contributor to the offset in estimation performance between
the CRLB and the proposed method is the process of spherical sam-
pling which results in a biased estimate due to the introduction of
significant aliasing to the recorded spherical harmonics, which is not
covered by the ideal model. Also depicted in Fig. 2 is the estimation
error due to a varying amount of reverberation in a simulated room
of size (L × W × H) = (8 × 8 × 3)m modeled by a wall reflec-
tion coefficient β utilizing the image method [12]. It can be deduced
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Fig. 2. Estimation error variance, C, for two incident plane waves – uncorrelated bandlimited white noise – of equal power where ϕ =
[π/6, π/2]T (upper row) and ϑ = [π/9, 5π/18]T (lower row) [source one shown]. R = 0.04 m, 1 kHz < f < 3 kHz, M = 32, N = 3,
blocklength: 1024 samples, 300 independent trial runs. ’UN’ and ’DN’ denote uncorrelated and spherically diffuse white noise, respectively.

that while the estimation algorithm does work satisfactorily for low
to moderate SNR and small β, algorithms that incorporate a rever-
berated signal model should be considered for future developments.
Future work will also include an in-depth performance analysis of
the estimator. Note that the cotangent in Eq. (3) prohibits a source to
be located at ϑ = π/2. This problem can be alleviated by rotating
the individual eigenbeams appropriately [1].

4. EIGEN-BEAM BASED SOURCE DETECTION

It has been tacitly assumed in Section 3 that the number of sources, I ,
necessary for estimating the signal subspace,US , is known a-priori.
However, obtaining this a-priori knowledge is often unrealistic in
practice. This section describes a method for source detection, i.e.
providing an estimate for the number of active sources.

It follows for the superposition of plane waves on spherical aper-
ture with Eq. (1) and kT r = kr[sin θ sin ϑ cos(φ−ϕ)+cos θ cos ϑ]
that

P (kR, θ, φ, ϑ, ϕ) =
IX

ι=1

eikR[sin θ sin ϑι cos(φ−ϕι)+cos θ cos ϑι]

= 4π
IX

ι=1

∞X
n=0

injn(kR)
nX

m=−n

Y m
n (θ, φ)Y m

n (ϑι, ϕι)
∗,

(18)

where the symbols ϑ and ϕ in Eq. (18), denoting the angular de-
pendencies in elevation and azimuth, respectively, are the DOAs
of I impinging plane waves, ϑ = [ϑ1, ϑ2, . . . , ϑI ]

T and ϕ =
[ϕ1, ϕ2, . . . , ϕI ]

T .
After performing the decomposition step, cf. Section 2, one ob-

tains the Fourier series expansion coefficients, i.e. eigenbeams, for
I plane waves due to the superposition principle as

Gm
n (kR, ϑ, ϕ) =

√
4π

IX
ι=1

injn(kR)Y m
n (ϑι, ϕι)

∗. (19)

Now, a wavefield synthesis operation that superimposes a finite
number of eigenbeams is considered. This synthesis operation can
be seen as an order-limited inverse spatial Fourier series expansion
with respect to a reference point on the sphere (θ0, φ0). The result,
after the sampling and wavefield truncation operations is

P (kR, θ0, φ0, ϑ, ϕ) = 4π
IX

ι=1

NX
n=0

injn(kR)

×
nX

m=−n

Y m
n (θ0, φ0)Y

m
n (ϑι, ϕι)

∗ + Es + Et.
(20)

For the sake of clarity, the error due to the truncation, Et and the
error due to sampling, Es, are assumed to be sufficiently small in
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the following. The interested reader is referred to the literature, e.g.
[8], for more details on these errors. With Eq. (18), Eq. (20) can be
written as

P (kR, θ0, φ0, ϑ, ϕ) =
IX

ι=1

eikR[sin θ0 sin ϑι cos(φ0−ϕι)+cos θ0 cos ϑι]

≈ 4π
IX

ι=1

NX
n=0

injn(kR)
nX

m=−n

Y m
n (θ0, φ0)Y

m
n (ϑι, ϕι)

∗.

(21)

In the time-domain, Eq. (21) reads

p(t, τ ) =
IX

ι=1

δ(t − τι), (22)

where with ι = 1, 2, . . . , I

τι =
R

c

»
sin θ0 sin ϑι cos(φ0 − ϕι) + cos θ0 cos ϑι

–
. (23)

In other words, by inverse Fourier transforming a re-synthesized
wavefield that had been decomposed into its (order-limited) spher-
ical harmonics, a simple source detection scheme now merely in-
volves a count of the peaks in Eq. (23).

As an example, Fig. 3 depicts the discretized impulse response
p(t = νT, τ ), where ν is an integer and T is the sampling interval
for two equi-power uncorrelated and bandlimited plane waves inci-
dent on a continuous aperture in free-field for ϑ = [π/3, 4π/9]T

and ϕ = [π/6, 2π/3]T . The parameters are chosen as R = 0.04 m,
N = 5, fs = 1/T = 48 kHz, and c = 340 m/s. The sensor signals
were bandlimited to .1 kHz < f < 7 kHz.The reference point on the
aperture was chosen to be (θ0, φ0) = (π/2, 0). Also shown are two
vertical lines that represent the maximum delays τmax = ±R/c, that
need to be considered in this detection scheme, cf. Eq. (23). I.e.,
peaks outside these boundaries can be disregarded. As can be seen,
two distinct peaks corresponding to the two sources are clearly visi-
ble, which facilitate the detection algorithm for spherical apertures.

In order to be able to track moving sources, an adaptive algo-
rithm is derived in [8].

5. CONCLUSIONS

In this paper, methods for detecting and localizing multiple wide-
band acoustic sources using spherical apertures based on a decompo-
sition of the wavefield into spherical harmonics has been discussed.
It has been shown that the localization of multiple plane waves ex-
hibits acceptable results, especially for sources positioned in low to
moderate spherically diffuse noise fields and mildly reverberated en-
vironments. For an extension of the presented methods to spherical
microphone arrays mounted into rigid spherical baffles, the inter-
ested reader is referred to [8]. Future work include a performance
comparison using several spherical sampling schemes including a
detailed analysis of the source detection method in real acoustic en-
vironments and the explicit integration of a more realistic (reverber-
ated) signal model.
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