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ABSTRACT
This paper provides a generalized framework to decompose a

sourcefield into its spatial and frequency components using a

spherical microphone array. Spherical arrays are used to de-

compose a soundfield into spherical harmonics which are the

natural basis functions for space over directions. This paper

extends this theory by including basis functions in frequency

to decompose a soundfield into spatial-frequency components.

Specifically, we use spherical Bessel functions as a set of ba-

sis in frequency. The paper also shows how to avoid numer-

ical ill-conditioning inherited in open spherical arrays at fre-

quencies corresponding to Bessel zeros.

Index Terms— Spherical microphone array, spatial de-

composition, sound field, beamforming, Fourier spherical Bessel

series

1. INTRODUCTION

Spherical microphone arrays have been introduced [1, 2] to

use in spatial sound recording and beamforming applications.

Over the last 5 years, there has been a strong interest [3–6]

in theory and design of spherical microphone arrays due to

their possible use in various applications such as in record-

ing directional sounds for surround sound creation, speech

enhancement and surveillance. The theory of such arrays is

based on decomposition of soundfields to spherical harmon-

ics which are the natural basis functions for valid soundfields

over three dimensional space.

A soundfield in an observation region1 is due to sources

outside of the observation region. Source signals (such as

speech) are generally frequency dependent as well as direc-

tional when observed from an observation region. Spherical

microphone arrays are used to sample the soundfield over

space and then to decompose the soundfield to the spher-

ical harmonic components which are frequency dependent.

These harmonic coefficients are manipulated to beamform or

to record directional sources.

1Spatial region where we use microphones to sample the soundfield

The observed soundfield is a spatial and frequency filtered

version of the original source signals. Specifically, individual

spherical harmonic component of a soundfield obtained on a

surface of a sphere is equal to filtering of the corresponding

component of the source signal by a spherical Bessel function.

Due to the unavoidable zeros of Bessel functions which lies

within the desired band, it is difficult to recover the harmonic

component of the sources around these frequencies. Rigid

[2] and dual sphere microphone arrays [5, 7, 8] have used to

overcome this limitations in the literature.

In this paper, we extend the general theory of spherical

microphones to include frequency decomposition. Specifi-

cally, we use an orthogonal property of Bessel functions to

form frequency basis functions. These basis functions are

useful in expressing any source signal as a Fourier-spherical

Bessel series. Then we show how to exploit Bessel zeros

to decompose soundfield into these basis functions. In this

approach, we not only avoid ill-conditioning associated with

spherical arrays but also decompose the source signal into an

efficient frequency basis set.

2. SOURCEFIELD AND SOUNDFIELD

2.1. Sourcefield

We define the sourcefield as the equivalent field created at an

origin of an observation region as a function of angular (di-

rectional) position of the source and frequency. A sourcefield

could consists of farfield/nearfield discrete/continuous (dis-

tributed) sources in space. We write an arbitrary sourcefield

as

A(φ̂; k) =
∞∑

n=0

n∑
m=−n

αnm(k)Ynm(φ̂) (1)

where φ̂ is a unit vector pointing to the direction of the source

(in 3D), Ynm(·) are the spherical harmonics, αnm(k) are the

spherical harmonic coefficients of the source field at wavenum-

ber k. Note that k = 2πf/c where f is the frequency and c
is the speed of sound propagation. In this paper, we use the
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term ‘frequency’ for wavenumber since f is proportional to k
assuming constant speed of sound.

2.2. Soundfield

Consider a spherical observation region Ω with radius R. Let

x ∈ Ω be a position vector connecting the origin of the sphere

to an arbitrary point within the spherical region. We use x̂ =
x/||x|| to denote a unit vector pointing to the direction of x,

which we use to show directions in 3D.

We can write the soundfield at a point x in terms of source-

field as

f(x; k) =

{∫
A(φ̂; k) eikx·φ̂dφ̂ for farfield sources,∫
A(φ̂; k) eik‖Sφ̂−x‖

‖Sφ̂−x‖ dφ̂ for nearfield sources,

(2)

where S is a radius of a sphere with equivalent nearfield sources,

and the integration is over the unit sphere. Using (1) and the

spherical harmonic expansion of eikx·φ̂ and eik‖Sφ̂−x‖

‖Sφ̂−x‖ (see [9,

p. 30–32] equations (2.42) and (2.45)), we write

f(x; k) =
∞∑

n=0

n∑
m=−n

βnm(k)jn(k‖x‖)Ynm(x̂), (3)

where

βnm(k) =

{
4πinαnm(k) for farfield,

−4πikαnm(k)h(2)
n (kS) for nearfield,

(4)

where jn(·) is the spherical Bessel function of order n, and

h
(2)
n (·) is the spherical Hankel function of the second kind of

order n. For the rest of the paper, we only consider the case

of farfield sources, however extension to nearfield sources is

possible.

Equation (3) represents the soundfield within the obser-

vation region as a weighted sum of spherical harmonic com-

ponents. The coefficients βnm(k) in (3) are called soundfield

coefficients. The relationship between the sourcefield coeffi-

cients and the soundfield coefficients are given by (4).

In the case of rigid spherical microphone array, the sound-

field is disturbed by the rigid sphere. In this case, the factor

jn(k‖x‖) in (3) is replaced by

jn(k‖x‖) − (j
′
n(kR1)/h(1)′

n (kR1))h(1)′
n (k‖x‖)

where (·)′ represents the derivative of a function with respect

to its argument. In this paper, we only consider the open
sphere configuration.

2.3. Spherical Harmonic Decomposition

Generally, spherical microphone arrays can be used to esti-

mate spherical harmonic coefficients βnm(k) of the sound-

field (3), and then the sourcefield coefficients αnm(k). These

coefficients could be further processed to form beams in cer-

tain directions, record them for surround sound applications,

and use them for localization/ direction of arrival estimation

(DOA).

Suppose we know the soundfield over a sphere of radius

r = ‖x‖. Using the orthonormal property of spherical har-

monics, we write

γnm(r, k) �
∫

f(rx̂, k)Y ∗
nm(x̂)dx̂ = βnm(k)jn(kr) (5)

where the integration is over the unit sphere. In the spherical

microphone array literature [1, 4, 5], finite number of micro-

phones on a fixed radius are used to measure the soundfield

and then estimate the soundfield as

βnm(k) =
γnm(r, k)
jn(kr)

, (6)

for frequencies where jn(kr) �= 0.

2.4. Filtering in Frequency Domain

We can clearly see the filtering of source signal by observ-

ing (5), which is a result of spatial decomposition on a given

radius. Using (4) and (5), for a farfield sources, we write

γnm(r, k) = 4πinαnm(k) jn(rk). (7)

Note that in (7), sourcefield coefficients αnm(k) is filtered by

jn(kr). Let the frequency band of the source signal be k ∈
(0, ku), and let zn� be the �th zero of jn(zn�), where zn1 <
zn2 < . . .. If zn�1 < kur < zn�2 then there are �1 zero-

crossings of jn(kr) within the desired bandwidth. Hence it is

difficult to recover αnm(k) around these frequencies.

3. FREQUENCY DECOMPOSITION

3.1. Fourier Bessel Series

Bessel functions are quasi periodic with successive zero cross-

ing intervals. In the past Bessel function series have been

used to represent speech and sound signals and considered as

more efficient than Fourier domain description [10]. A finite

duration signal f(t) in the interval of 0 < t < tu can be rep-

resented by an infinite Fourier Bessel series expansion [11]

as

f(t) =
∞∑

�=1

C�Jv(
z�

tu
t), for 0 < t < tu (8)

where z�, � = 1, 2, . . . are the roots of Jv(z�) = 0 and v is a

real number. Using the orthogonality of Jv( z�

tu
t) for different

�,

C� =
2

t2uJ2
v+1(z�)

∫ tu

0

tf(t)Jv(
z�

tu
t) dt. (9)
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In this paper, we make use of Fourier-(spherical) Bessel (FSB)

series which has spherical Bessel functions instead of cylin-

drical Bessel functions. The synthesis and analysis of FSB

series can be derived using (8) and (9) as

f(t) =
∞∑

�=1

C�jn(
z�

tu
t), for 0 < t < tu (10)

and

C� =
2

t3uj2
n+1(z�)

∫ tu

0

t2f(t)jn(
z�

tu
t) dt. (11)

Also note that the relevant orthogonality property

∫ tu

0

jn(
z�1

tu
t)jn(

z�2

tu
t) t2dt (12)

=

{
t3u
2 j2

n+1(z�) if z�1 = z�2 ,

0 otherwise.

3.2. FSB Expansion

We choose FSB series (10) to expand the sourcefield coeffi-

cients αnm(k) within the desired frequency band 0 < k <
ku,

αnm(k) =
∞∑

�=1

anm� jn(
zn�

ku
k). (13)

For reasons to be understood in the next section, we use the

nth order spherical Bessel function corresponding to the order

of the sourcefield coefficient. One advantage of using (13) is

that once we estimate anm� for n = 0, . . ., m = −n : n,

and � = 1, . . ., we could recalculate sourcefield coefficients

αnm(k) for any frequency k.

Thus, a general farfield source distribution (sourcefield)

can be written as

A(φ̂, k) =
∞∑

n=0

n∑
m=−n

∞∑
�=1

anml jn(
zn�

ku
k)Ynm(φ̂), (14)

and

anm� =
2

∫ ku

0

∫
A(φ̂, k)Y ∗

nm(x̂)jn( zn�

ku
k)dφ̂k2dk

k3
uj2

n+1(zn�)
(15)

where the second integration is over the unit sphere. Equation

(15) is derived by applying the orthonormal property of spher-

ical harmonics and orthogonal property of spherical Bessel

functions (12).

3.3. Exploitation of Bessel Zeros

We start with the following theorem:

Theorem 1 (Spatial-Frequency Decomposition) Let f(x, k),
x ∈ Ω, k ∈ (0, ku) be a valid soundfield over a spatial region

Ω. Then the sourcefield corresponding to f(x, k) is given by
(14) with spatial-frequency harmonic coefficients

anml =
1

2πink3
uj2

n+1(zn�)

∫ ku

0

∫
f(rn�x̂, k)Y ∗

nm(x̂)k2dx̂dk

(16)

where f(rn�x̂, k) are the soundfield over discrete radii rn� =
zn�/ku for n = 0, 1, . . ., � = 1, 2, . . ., and zn� is the �th zero
of the nth spherical Bessel function.

Proof:

Since f(x, k), x ∈ Ω, k ∈ (0, ku) is induced by the source-

field A(φ̂, k), from (4) and (5), we have

4πinαnm(k)jn(kr) =
∫

f(rx̂, k)Y ∗
nm(x̂)dx̂. (17)

By substituting (13) in (17) for αnm(k) we obtain

4πin
[ ∞∑

�=1

anm�jn(
zn�

ku
k)

]
jn(kr) =

∫
f(rx̂, k)Y ∗

nm(x̂)dx̂.

(18)

Let r = zn�/ku. We multiply both sides of (18) by k2 and in-

tegrate over (0, ku), and then apply orthogonal property (12)

to get (16). �
Theorem 1 states that by sampling the soundfield over a

number of discrete spheres, we can decompose the sourcefield

to its basis coefficients anm�. However, we have not answered

the following questions: (i) What is the maximum number

of � that sufficiently characterizes a typical sourcefield; (ii)

Does �max depend on n?; (iii) How many spheres of micro-

phones do we need?. These questions need to be answered in

a future publication. However, we think that the number of

co-centered spheres needed is too many for a practical imple-

mentation. In the next section, we show two alternative meth-

ods to use (i) dual sphere, (ii) single sphere measurements to

estimate anm�.

4. ALTERNATIVE IMPLEMENTATIONS

4.1. Dual Sphere Method

Suppose we have two co-centered open spherical microphone

arrays of radius r1 and r2 as in [5,7]. Then it is can be shown

anml =
1

2πink3
uj2

n+1(zn�)
× (19)

∫ ku

0

[∫
[f(r1x̂, k) + f(r2x̂, k)]Y ∗

nm(x̂)dx̂

jn(kr1) + jn(kr2)
]
jn(

zn�

ku
k)k2dk.

We omit the proof due to space limitations. Having measure-

ments from two radii will help to have improved SNR of the

measured signal for frequencies where one of the radius cor-

responds to a Bessel zero. One may also use a method given

in [5] to find the optimum ratio of two radii or combine the

two measurements in some optimum way.
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4.2. Omitting Low SNR measurements

In this method, we only use measurements from a single sphere

of radius r0. It is clear that we can not recover the source field

components αnm(k) in the vicinity of k = zn�/r0.

Suppose that there is an acceptable SNR outside of the

frequency range (zn�/r0) − δ < k < (zn�/r0) + δ, where

δ is a suitable small constant. Then we estimate αnm(kq),
kq /∈ [(zn�/r0) − δ < k < (zn�/r0) + δ] as

αnm(kq) =
1

4πinjn(kqr0)

∫
f(r0x̂, kq)Y ∗

nm(x̂)dx̂. (20)

Provided there are sufficient frequency sampling q = 1, . . . , Q
which avoid low SNR frequency interval, we can show

anm� ≈ 2
k3

uj2
n+1(z�)

Q∑
q=1

αnm(kq)jn(
zn�

ku
kq)k2

qΔkq (21)

where Δkq is the difference between qth and q + 1th sample.

We have following comments:

1. We believe that this is a promising method to use with

existing spherical microphone array methods to esti-

mate spatial-frequency coefficients of the sourcefield.

2. The method avoids the difficulty associated with Bessel

zeros.

3. One can argue that this method is an extrapolation as

using (13) together with estimated anm� from (21) can

calculate αnm(k) over the frequency bands (zn�/r0)−
δ < k < (zn�/r0) + δ which corresponds to Bessel

zeros.

4. We still need to find practical value(s) for δ, as well

as few example illustrations to support these methods.

Unanswered details will be addressed in a future publi-

cation.

5. SUMMARY

This paper combines two sets of orthogonal functions (i) spher-

ical harmonics, (ii) spherical Bessel functions, to form basis

sets in angle and in frequency respectively, to decompose a

soundfield using spherical microphone arrays. We show that

by sampling the soundfield over a natural set of spheres, we

can estimate the corresponding sourcefield coefficients in the

above basis set. Since it is not practical to have a large number

of sampling spheres, we show two alternative methods (i) dual

sphere measurement, and (ii) single sphere with omitting low

SNR measurements, to estimate the sourcefield coefficients.

However, there are number of unanswered questions in

this paper, which we hope to provide in a future publication

together with illustrations to support the claims in this paper.
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