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ABSTRACT 

There are applications where microphone arrays must be 
integrated into/onto a structure. As an example there are 
efforts to instrument soldiers’ helmets and vehicles with 
sensors in order to detect and localize noise events. In these 
cases the sound will be diffracted around the support 
platform. In this paper a spherical diffracting platform is 
used and is shown to improve low frequency performance. 
The sphere was chosen as its diffraction can be modeled 
analytically and it is similar to a helmet. Specifically, this 
paper will compare both theoretical and experimental results 
for spherical free field and diffracting arrays of identical 
geometries to examine the effect diffraction has on the array 
performance.  Singular values of the array manifold matrix 
will be compared to show that diffracting arrays outperform 
free field arrays, especially at lower frequencies. 

Index Terms— Acoustic diffraction, Acoustic signal 
processing, Acoustic arrays, Diffraction, Source location 

1 INTRODUCTION 

This paper is concerned with the performance of a 
nominally spherical microphone array mounted on a 
diffracting body. The reason for this design choice is two-
fold. First, spherical arrays, unlike line or planar arrays, 
have beam patterns that are similar in all directions and are 
therefore not biased to any particular orientation between 
the source and the array. Secondly, the intention is to embed 
the microphone arrays into hard pre-existing structures such 
as helmets (see Figure 1a). These arrays are intended to act 
as nodes in a multinode dynamic network [1] for passive 
surveillance and tracking where the orientation between the 
source and array is not known a priori. Examples of 
spherical array geometries have been shown to accurately 
measure sound fields, both when in the free field [2], and 
mounted on a rigid sphere [3].  Furthermore, the presence of 
a rigid sphere as a mounting surface has been shown to 
increase low frequency beamforming performance [4].  This 
paper will focus on a hemispherical array mounted on a 

rigid sphere (see Figure 1b) and will compare the results 
with a geometrically identical array acting in a free field (i.e. 
no diffracting body). This extends previous work on a 
microphone array placed on a rigid cylinder [5,6] where it 
was shown that there are substantial performance benefits 
using the diffracting body, especially at low frequencies. As 
this work will be extended to include non-symmetrical 
shapes, such as the helmet shown in  

Figure 1, it becomes difficult to find simple analytical 
models to determine the array manifolds (magnitude and 
phase differences at the microphones due to array geometry 
and diffraction) and either computationally intensive 
numerical models [7] or an experimental approach is 
required. For this work an experimental approach using a 
source and reference microphone in an anechoic 
environment is used to verify the theory [5].    

 
Figure 1. a) Helmet mounted array and  b) spherical array 
used for this work. 

2 THEORY: SOUND SOURCE LOCALIZATION 

The goal is to accurately estimate an angle of arrival of 
the noise source relative to the microphone array using the 
measured set of microphone signals. The outputs from a 
number of arrays can then be fused together in order to 
estimate the location of the source in space. In order to 
achieve this a Minimum Variance Distortionless Response 
(MVDR) beamformer is used.  

Let X be a complex vector of microphone responses at 
frequency  and Y be the beamformed output. There exists a 
set of complex weights w  that preserves the power in the 
look direction  while minimizing the power of the output 
signal Y [8]: 
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XwY Hww  Eq. 1 

11dw H  Eq. 2 

ww H
XXΦmin  Eq. 3 

where H indicates the Hermitian transpose, dd  is the array 
manifold vector of the array in the look direction , and ΦXX 
is the cross spectral density (CSD) matrix for the 
microphone inputs and is based on an assumed noise model. 
The MVDR filters are then calculated by: 

Different look directions (or choices of ) can then be 
chosen to build up an array of beamformer weights for the 
various look directions of interest. The critical point here is 
that if ΦXX is ill-conditioned, which is typically the case at 
low frequencies, then the matrix must be conditioned before 
inversion. Diagonal loading is one such conditioning 
technique:   

dd
dw H IΦ

IΦ

XX

XX

d

1

 Eq. 5 

where  is a conditioning term and I is the identity matrix.  
For these ill-conditioned cases there is a basic tradeoff 
between accurate localization (or Directivity Index) and 
sensitivity to sensor noise (or White Noise Gain) [6]. As the 
coefficient  is increased the white noise gain improves at 
the cost of poor directivity. In this paper the normalized 
singular values of the CSD matrices will be investigated as a 
measure of overall performance of each array. As a simple 
rule, the larger the singular values at a frequency, the better 
the conditioning and hence the better the localization 
performance of the array for a given white noise gain [6]. 
The model used here will assume a diffuse noise field where 
the CSD matrix can be estimated directly from the array 
manifold matrix D (and is described in more detail in 
reference [6]).  The array manifold matrix is the set of M 
microphone responses to unit plane waves in L directions.  
The number of directions chosen depends upon the spatial 
sampling strategy employed, whether based on equal angles, 
equal areas, etc.  

HDBDΦXX D  Eq. 6 

D has dimensions of number of sensors by number of look 
angles (i.e. the manifold vector dd  for look direction  
occupies a single column of the matrix) and B is a diagonal 
matrix of weights. The diffuse field model assumes that the 
noise field is generated by incoherent noise sources acting 
equally from all angles and therefore B is chosen to 
maintain this equal power from equal area assumption if the 
look angles are not equally spaced.  

2.1 Finding Array Manifolds 
The calculation of the MVDR filters requires 

measurements or estimates of the array manifold matrix D. 
In this paper, four sets of array manifolds will be estimated 
and compared: (i) theoretical free field array calculated 
using the free-field wave equation, (ii) theoretical diffracting 
array calculated using spherical harmonic diffraction [9], 
(iii) experimentally measured free-field array and (iv) 
experimentally measured diffracting array. It is beyond the 
scope of this paper to describe the theoretical calculation of 
diffraction due to a sphere and the reader is referred to the 
literature for more details.  

If the array is small as compared to the distance from 
the source (plane wave assumption) then the normalized 
free-field manifolds can be calculated as, 

jkred je  Eq. 7 

where k is the wavenumber given by the frequency divided 
by the speed of sound and rr is a vector of path length 
differences [r1,r2,…]T from the individual array elements to 
the source at angle as shown in Figure 2.  
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Figure 2: Relative path length differences for a three element 
array with wave arriving at angle . 

3 EXPERIMENTS 

3.1 Experimental Setup 
The diffracting array was constructed from a 0.26m 

diameter rigid plastic sphere with three microphones placed 
at the equator at azimuth angles of 0°, 120°, and 240°, and 
three microphones placed at 35° elevation from horizontal at 
azimuth angles of 60°, 180°, and 300°. The microphone 
array itself was mounted on a wire mesh that fit tightly over 
the rigid sphere.  This mesh was easily removable so that a 
comparison between identical geometries could be 
performed with and without the diffracting body. The array 
was placed in an anechoic chamber and the array manifold 
was measured at 15° azimuth angle increments and 20° 
elevation angle increments from 0° to 80° elevation using a 
speaker as a sound source (see [5] for more details). This 
resulted in a [6 x 120] manifold matrix of the form [number 
of microphones by number of directions] for a range of 
frequencies 0-4KHz for both the diffracting and the non-
diffracting arrays. An examination of spatial sampling 
methods is presented by Rafaely [10], and the non-uniform 
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spacing chosen here was based on experimental apparatus 
constraints.   

The matrix B (Eq. 6) must be used to account for the 
relatively coarse sampling near the equator and very dense 
sampling near the poles. Therefore bii, the ith diagonal 
element of B corresponding to the ith angle, is weighted in 
proportion to the cosine of its elevation angle i. 

iiib icosc  Eq. 8 

The geometry of the array was chosen to mirror what 
could be equipped in a real world system on a diffracting 
body such as a helmet, with an example shown in  

Figure 1.  Sampling only the upper hemisphere of 
directions was also chosen based on real world testing, 
where arrays are placed on the surface of the earth and 
sound sources are typically never below that surface. 
Alternative geometries can be chosen without changing the 
basic methodology and conclusions of this paper.  
3.2 Results 

A tradeoff when designing microphone arrays is the 
spacing of sensors and the effective frequency range of the 
array.  The dimensions of an array placed on a helmet would 
normally predispose it to poor low frequency performance, 
but the presence of the rigid helmet mitigates this problem.  
One way of viewing the beamforming and localization 
ability of an array is to examine the normalized singular 
values of its CSD matrix.  At each frequency, the relative 
magnitude of each singular value, normalized to the largest 
singular value, indicates how well conditioned the CSD 
matrix is.  The ability of an array to beamform or localize at 
a particular frequency is based on the phase differences 
between array elements.  When the wavelength with respect 
to the array size is very large, there is effectively no phase 
difference between microphones, creating a poorly 
conditioned CSD matrix and poor performance.  The trend 
is seen in the singular values of the CSD matrix at low 
frequencies, where the largest singular value is relatively 
dominant, indicating that the array size is too small to 
effectively beamform.  The main point of examining the 
singular values of the CSD matrix is that any localization or 
beamforming algorithm that relies on phase differences 
between array elements will be affected. 

The singular values for a theoretical free field array and 
a theoretical diffracting array are shown in Figure 3 over the 
frequency range 100-4000Hz.  In both cases the maximum 
singular value has been normalized to 0dB. The next two 
lines for each array both represent two singular values (the 
lines fall on top of one another due to symmetry). It is clear 
that at any given frequency the singular values for the 
diffracting array are larger than the non-diffracting array, 
leading to better localization performance for a given white 
noise gain. The next comparison, shown in Figure 4, is 
between experimental and theoretical results for a free field 
array and shows a very high degree of agreement. Any 
variations between the results could be due to slight errors in 

the position of the microphones. This validates the 
experimental procedure used to measure D.  

Figure 5 shows a comparison between experimental and 
theoretical results for the diffracting case.  As in the case of 
Figure 4, good agreement is found between measured and 
theoretical data. The last comparison made is between 
measured free field and measured diffracting CSD matrices, 
shown in Figure 6. The most important feature to note in 
Figure 6 is how the singular values for the diffracting array 
are consistently larger than the singular values for the free 
field array at frequencies below 1000 Hz. The increase in 
singular values at low frequencies translates to an increase 
in localization performance.  

 
Figure 3. Singular values for diffracting and free field 
spherical arrays of identical geometries using theory. 

 
Figure 4. Singular values for free field spherical arrays using 
measurements and theory. 

When viewing Figure 3 through Figure 6, the relative 
magnitude of the singular values are important based on the 
conditioning of the CSD matrix necessary to allow the 
matrix inversion of equation 6. The impact of conditioning 
is similar to ignoring singular values below some value, 
proportional to .  As an example, assume the conditioning 
is such that the value is -10dB.  Referring to Figure 6, the 
diffracting array has 3 singular values above -10dB at 300 
Hz, whereas the free field array has only 1.  This results in 
better performance at lower frequencies for the diffracting 
array compared to the free field array. 
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Figure 5. Singular values for diffracting spherical arrays using 
measurements and theory. 

One explanation as to why the singular values for the 
diffracting array are consistently higher than those values 
for the free field array is the increased phase difference 
between array elements [11].  The presence of a rigid body 
allows the phase to develop as the wavefront diffracts 
around it.  To illustrate, Figure 7 shows the maximum phase 
measured by the array at an azimuth angle of 0° and an 
elevation angle of 0° for a frequency range of 50 to 500 Hz. 

 
Figure 6. Singular values for diffracting and free field 
spherical arrays using measurements. 

4 CONCLUSIONS 

An overview of a simple localization method using MVDR 
filters has been presented which uses diagonal loading to 
condition  the CSD matrix. Theoretical results for both 
diffracting and free field arrays have been compared to 
show that the singular value magnitudes of diffracting arrays 
are consistently larger than the values of free field arrays.  
Experimental results have been compared to theoretical 
results to show good agreement between measurements and 
theory.  A final comparison using experimental results for 
diffracting and free field arrays was presented to show a 
performance benefit represented by larger singular values at 
lower frequencies.  Lastly, a simple explanation for the 
origin of large singular values was given based on the 
maximum phase difference that each microphone array 
experiences. 

 
Figure 7. Maximum phase difference between microphones at 
an azimuth angle of 0° and an elevation angle of 0° for 
theoretical (UPPER) and experimental results (LOWER). 
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