
DEPLOYING GOOG-411: EARLY LESSONS IN DATA, MEASUREMENT, AND TESTING

Michiel Bacchiani, Françoise Beaufays, Johan Schalkwyk, Mike Schuster, Brian Strope

Google, Inc.

ABSTRACT

We describe our early experience building and optimiz-
ing GOOG-411, a fully automated, voice-enabled, business
finder. We show how taking an iterative approach to system
development allows us to optimize the various components of
the system, thereby progressively improving user-facing met-
rics. We show the contributions of different data sources to
recognition accuracy. For business listing language models,
we see a nearly linear performance increase with the loga-
rithm of the amount of training data. To date, we have im-
proved our correct accept rate by 25% absolute, and increased
our transfer rate by 35% absolute.

Index Terms— business finder, directory assistance, voice
search, speech recognition.

1. INTRODUCTION

GOOG-411 [1] is a speech-enabled business finder. Users
are prompted to say a city and state, and then a specific busi-
ness name or a business category (e.g. “hardware stores”).
A speech recognition system translates the user’s spoken re-
quest into a query that is fed to a web-based business search
engine, Google Maps [2]. Maps returns a sorted list of busi-
nesses. Depending on how closely these match the user’s
query, one to eight results are spoken back to the user, us-
ing text-to-speech (TTS). Users can select a specific result,
get connected to the business, or request an SMS with busi-
ness information and map. GOOG-411 currently works only
in English, and covers tens of thousands of cities throughout
the United States.
The concept of speech-enabling 411 services has been re-

searched for quite a few years (see e.g. [3, 4, 5]), and has been
implemented in various services, including 555 Tell [6], Live
Search 411 [7], and Free 411 [8] in the US. GOOG-411 was
to our knowledge one of the first deployed 411 service that in-
cluded full business and category search, and did not rely on
human operators to handle difficult queries. Our underlying
assumption in making this choice was that by taking an iter-
ative approach, with data and appropriate metrics, the system
would keep improving over time. Having back-off operators
changes the way users interact with the system. To avoid this
and focus on the end solution, we decided to not use operators
from the start.

After a brief overview of the system architecture, we de-
scribe the data pipeline and measurements we put in place
to improve GOOG-411. We then focus more closely on two
key components, the acoustic models and language models,
and we conclude by reviewing high-level metrics and their
progress over time.

2. SYSTEM ARCHITECTURE

Figure 1 shows the main components of the GOOG-411 sys-
tem. These include the telephony network, an application
server that executes the voice application, a TTS server, a
recognition server with its acoustic, language, and pronun-
ciation models (AM, LM, PM), the Google Maps service to
execute business queries, and an SMS gateway to send in-
formation to mobile users. Each one of these components
contains its own redundancy and load balancing capabilities.
Because this is a dialog system, many of the processes interact
asynchronously, making the overall system a fairly complex
state machine. We leverage the Google infrastructure (ma-
chine grid, GFS [9], Bigtable [10]) for redundancy, automated
fail-over, and multi-homed implementation to ensure the re-
liability and scalability of the service. Live probers are used
to monitor the system, and real-time unsupervised statistics
allow us to monitor its quality.

� � � �

� � � � � � 	
 �

� � 	 � � � � � � �

� � � � � � � � �

� 	 � �

� � � �
� �

� �

� �

� � � � � � �

� � � � � � � � � �

Fig. 1. GOOG-411 Block Diagram.

3. DATA PIPELINE &MEASUREMENTS

An essential aspect of our design is that of data-driven op-
timization. To this end, we built an extensive data pipeline.
All incoming calls are analyzed to monitor the health of the
system (check for component failures, etc), and to track its
quality (e.g. what fraction of calls reach a given point in the

52601-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

dialog). The data is then saved, transcribed, and used for fur-
ther supervised analysis as well as to retrain the main com-
ponents of the system. These are then updated in the live
system. At any time, the most recent data is used for testing,
everything else is folded into the training sets. This rolling
test set approach allows us to stay in tune with UI and in-
frastructure updates, to track changing usage patterns, and to
avoid overfitting to stale test sets.
To measure recognition accuracy, our primary metric is

receiving-operating curves (ROC), that show correct-accept
(CA) against false-accept (FA) rates. These are evaluated
at the sentence-level, over the semantic interpretation of the
recognition results, e.g. recognizing “um italian restaurants”
instead of “italian restaurant” is considered a correct accept
(provided that the confidence value is superior to some prede-
fined threshold, else it would be a reject).
At a system level, we measure the transfer rate, i.e. the

fraction of calls in which users connect to businesses or re-
ceive an SMS with business details. Though simplistic, this
metric is a good first-order approximation to user happiness.
As illustrated in Sec. 6, it reflects UI changes, infrastructure
improvements, and accuracy increases.
Finally, at a product level, we track the increase in traffic,

which is another indication of the success of the service.
In the next two sections, we describe in more details our

experiments in acoustic and language modeling. When re-
porting results, here and in Sec. 6, we deliberately omitted
absolute performance values, showing relative improvements
instead. This is for competitive reasons, and because absolute
numbers are easily misquoted when taken out of their exact
context. For example, accuracy figures depend on whether
we keep or eliminate from the test sets sentences that contain
no understandable speech or no speech directed at the ser-
vice, and how frequent these are. It also depends on whether
the back-end search is included in the scoring. Transfer rates
depend on whether we include calls where the users hang up
before giving any input. We hope that the relative metrics
we do expose will nonetheless be informative to the research
community.
The experiments described below reflect the performance

of our live service, which interested readers can test by calling
1-800-GOOG-411. In general, the service has received posi-
tive user feedback, indicating that the underlying technology
works at a level accuracy that makes it useful to users, and
that is presumably comparable to commercial systems (with
semantic sentence-level accuracies in the 50-80% range).

4. ACOUSTIC MODELING

The speech recognition engine is a standard, large-vocabulary
recognizer, with PLP features and LDA, GMM-based triphone
HMMs, decision trees, STC [11], and an FST-based search
[12]. The trainer does maximum-likelihood optimization, and
is implemented in a mapreduce framework [13], allowing us

to train models in a matter of hours, even with large data sets,
currently with a few hundred machines. The acoustic models
compared in this section are gender-independent, one-pass,
and are trained exclusively with GOOG-411 speech.

CA+8

CA

 0 2 4 6 8 10 12 14 16 18 20
False Accept (%)

C
or

re
ct

 A
cc

ep
t (

%
)

"1/1_askListing.roc"
"1/2_askListing.roc"
"1/4_askListing.roc"
"1/8_askListing.roc"

"1/16_askListing.roc"
"1/32_askListing.roc"
"1/64_askListing.roc"

Fig. 2. AskListing performance as a function of the amount
of acoustic training data.
Figure 2 shows the relative performance of a series of

models trained with increasing amounts of data. The test set
consists of roughly 20,000 recently-collected utterances spo-
ken in response to “What business name or category?” (the
askListing dialog state), spread over 3,000 cities. The lan-
guage models and acoustic model architecture are held con-
stant across experiments. The training sets were set up so that
we show results with all training material, with the first half
we collected, with the first quarter, the first eighth, etc. The
largest training set contains on the order of thousands of hours
of speech.
Interestingly, recognition performance does not increase

dramatically with the amount of training data (8% absolute
CA increase at 10% FA for a factor 64 increase in training
size). Part of the reason may be that the training data is well
matched to the test set, both phonetically and acoustically (the
same users may even appear in both training and testing, in
different calls of course, but probably on the same device, and
sometimes speaking the same query). Another reason may
simply be that we haven’t explored that space much yet.

5. LANGUAGE MODELING

The language models are a combination of N-gram statistical
languagemodels (SLM) and context-free grammars. They are
trained from three data sources that are weighted to optimize
ROCs on development data sets.
First, we have a set of business and location databases:

These provide coverage, but the official business names they
contain don’t always match what people say, e.g. “google
inc.” for “google” or “starbucks coffee” for “starbucks”.
Second, we have Google Maps web query logs: This is

a large corpus of typed queries that are better matched to

5261

GOOG-411 (users have learned they can type just “google”
or “starbucks”). Query counts are used to derive LM prob-
abilities, however the priors in Maps and GOOG-411 don’t
always coincide: for example “real estate” is a frequent web
query, but an uncommon speech request.
Third, we have speech data: Transcribed speech from

GOOG-411 calls provides the best matched data.
In all experiments below, the language models are pruned

to maintain close to real-time recognition, and limit the over-
all system latency.

CA+5

CA

CA-6

CA-33

 0 2 4 6 8 10 12 14 16 18 20
False Accept (%)

C
or

re
ct

 A
cc

ep
t (

%
)

"combo.roc"
"web_queries.roc"

"speech.roc"
"business_db.roc"

Fig. 3. AskListing performance as a function of the type of
LM training data.
Figure 3 shows the performance of the askListing state as

a function of the type of LM training data. Currently, the web
log data produces the best LM, followed by the speech data,
with a difference of 6% absolute CA between the 2 LMs at
10% FA. The business databases are much worse. Combining
the 3 data sources (combo) gives an extra 5% CA gain over
the web LM.
Figure 4 shows the performance of a business LM trained

from speech data only, as a function of the amount of speech
training data. Here again the training set sizes vary by fac-
tors of 2. Since the corresponding ROCs are roughly equally
spaced, we can conclude that the accuracy of the LM grows
linearly with the log of the amount of training data. At this
rate, the contribution of the speech data will match that of
the (current) web queries when we collect just 4 times more
speech data (even though this will still be orders of magnitude
less than the amount of web data).
Figure 5 shows the performance of the askCityState di-

alog state, as a function of the type (web, speech, combo)
and amount of speech LM training data. Being a simpler
task, askCityState improves less than linearly with the log
of the amount of data. The speech data performs as well
as the web data, which was extensively processed to parse
city-states from queries expressed in a variety of formats (full
street addresses, etc). Without this processing, the web data
showed very poor rejection performance. Combining the speech
and (processed) web data gives the best CA. The databases
did not provide any additional benefit.

CA+18

CA

 0 2 4 6 8 10 12 14 16 18 20
False Accept (%)

C
or

re
ct

 A
cc

ep
t (

%
)

"1/0.roc"
"1/2.roc"
"1/4.roc"
"1/8.roc"

"1/16.roc"
"1/32.roc"
"1/64.roc"

Fig. 4. AskListing performance for the speech-data-trained
LM as a function of the amount of LM training data.

CA+15

CA

 0 2 4 6 8 10 12 14 16 18 20
False Accept (%)

C
or

re
ct

 A
cc

ep
t (

%
)

"combo.roc"
"web_queries.roc"

"speech.1/0.roc"
"speech.1/2.roc"
"speech.1/4.roc"
"speech.1/8.roc"

"speech.1/16.roc"

Fig. 5. AskCityState performance as a function of the type
and amount of LM training data.

6. OVERALL PERFORMANCE IMPROVEMENTS

This section is intended to give a global perspective on the
evolution of GOOG-411 over time. Many factors are com-
bined, including updates of statistical models, UI experiments,
infrastructure changes, bug fixes, and also extraneous events
such as holidays that affect the usage patterns of the service.
Starting with recognition performance, Fig. 6 illustrates

our improvements on the askListing state, as a function of
time. Each ROC is measured on a different test set (see the
concept of rolling test set in Sec. 3). The figure shows that
at an FA rate of 10%, we improved the correct accept rate by
roughly 25% absolute over the last 7 months.
Figures 7 and 8 show GOOG-411 daily number of incom-

ing calls, and the daily transfer rate over a period of one year.
A few interesting points are annotated. Points A and B on the
traffic chart show traffic increases as we increased our adver-
tisement campaign. Point C was a partial system outage.
Point E on both plots marks the official launch of GOOG-

411, with a strong increase in traffic, and a large drop in trans-
fer rate: users were experimenting with the system and didn’t

5262

CA+25

CA

 0 2 4 6 8 10 12 14 16 18 20
False Accept (%)

C
or

re
ct

 A
cc

ep
t (

%
)

"roc.070923"
"roc.070710"
"roc.070610"
"roc.070416"
"roc.070328"
"roc.070314"
"roc.070218"

Fig. 6. AskListing performance over time.

care to complete their calls. Point D corresponds to the quiet
period before the launch: we stopped advertizing the service
(drop in call volume), so callers were mostly power users for
whom the service works well (peak in transfer rate).
Point F on the transfer chart is the beginning of a UI ex-

periment where we narrowed down the results presented to
the users. This encouraged people to connect more often. At
point G, we extended the connection feature to all US states.
Point H resulted from an interesting bug where a frac-

tion of callers were offered incorrect results for a substantial
number of queries. Users reacted with a drop in transfer rate.
Points J and K indicate telephony infrastructure glitches, also
causing transfer rate drops. Point I is the 4th of July: users
were presumably more motivated to connect to businesses for
their shopping needs.
We could analyze the curves in more details. Clearly traf-

fic and transfer rate profiles won’t tell us everything about
user happiness, but they reflect a surprisingly broad set of
events, and prove very useful in monitoring the health and
growth of the system. There is nonetheless a fair amount of
noise in the curves that results from a combination of factors
that are not always easy to separate out. This complicates
online experimentation. A small UI change for example may
not clearly impact the transfer rate, even though a few of them
eventually will. For these, we need to rely on more targetted
metrics as well, and take the leap of faith that they will even-
tually convert in user happiness improvements, similarly to
what we do when optimizing the recognition models.

7. CONCLUSION

In conclusion, we took an iterative-development approach to
build, deploy, and grow a fairly complex speech-based sys-
tem. We showed how, by focussing on data, measurements,
and constant system refinements, we can quickly improve low-
level metrics such as speech recognition accuracy as well as
high-level user-related metrics. In general, we found that hav-
ing access to the whole product stack with the flexibility to
modify it as desired, and having a steady growing stream of

data, are key factors in our ability to consistently improve the
service over time.

x1000

x100

x10

x1
070901070601070301061201060901

Date

D
ai

ly
 T

ra
ffi

c

A

B

C

D

E

"traffic.dat"

Fig. 7. Daily traffic as a function of time.

T+35

T

070901070601070301061201060901
Date

Tr
an

sf
er

 R
at

e
(%

)

F

G

D

E

H

I

J K

"transfer.dat"

Fig. 8. Transfer rate as a function of time.

8. REFERENCES

[1] “GOOG-411,” http://www.google.com/goog411.
[2] “Google Maps,” http://maps.google.com.
[3] L. Boves et al., “ASR for automatic directory assistance: The

SMADA project,” in Proc. ASR, 2000, pp. 249–254.
[4] N. Gupta et al., “The AT&T spoken language understanding

system,” in IEEE Trans. ASLP, 2006, pp. 213–222.
[5] D. Yu et al., “Automated directory assistance - from theory to

practice,” Proc. Interspeech, 2007.
[6] “555 Tell,” http://www.tellme.com/products/TellmeByVoice.
[7] “Live search 411,” http://www.livesearch411.com.
[8] “Free 411,” http://www.free411.com.
[9] S. Ghemawat et al., “The google file system,” in Proc.

SIGOPS, 2003, pp. 20–43.
[10] F. Chang et al., “Bigtable: A distributed storage system for

structured data,” in Proc. OSDI, 2006, pp. 205–218.
[11] M.J.F. Gales, “Semi-tied covariance matrices for hidden

markov models,” Proc. IEEE Trans. SAP, May 2000.
[12] “OpenFst Library,” http://www.openfst.org.
[13] J. Dean et al., “Mapreduce: Simplified data processing on large

clusters,” in Proc. OSDI, 2004, pp. 137–150.

5263

