
APPROXIMATE WORD-LATTICE INDEXING WITH TEXT INDEXERS:
TIME-ANCHORED LATTICE EXPANSION

Peng Yu, Yu Shi, and Frank Seide

Microsoft Research Asia, 5F Beijing Sigma Center, 49 Zhichun Rd., 100080 Beijing, P.R.C.
{rogeryu,yushi,fseide}@microsoft.com

ABSTRACT
We address the problem of how to represent or approximate speech
lattices to be indexed with existing text indexers. We present a
method named Time-Anchored Lattice Expansion (TALE), which
can be implemented by a Standard Text Indexer (STI). On a 170-
hour lecture set, we compare TALE with other lattice indexing
methods: confusion networks, Position-Specific Posterior Lattices
(PSPL), and Time-based Merging for Index (TMI). All methods
achieve accuracies comparable to searching raw lattices when the
corresponding index structures and phrase matching algorithms are
used. However, when implemented with an STI, TALE significantly
outperforms all other methods. Compared to indexing linear text,
TALE improves accuracy by 30-60% for multi-word phrase searches
and by 130% for two-term AND queries.

Index Terms— lattice indexing, Standard Text Indexer, key-
word spotting.

1. INTRODUCTION

The tremendous progress in audio compression and storage tech-
nologies and the pervasive adoption of the Intra/Internet has fostered
a dramatic increase of the use of digital media, such as online lec-
ture videos, archived meetings or conference calls, and voicemails.
Search engines to deal with digital audio or video as well as text
materials become important. Currently, most existing systems rely
on the anchor text, surrounding text, closed captions, and metadata
of the audio or video file. However, such information is not always
available, and sometimes is not discriminative at all. On the other
hand, automatic speech recognition makes it possible to directly in-
dex the speech part of those digital medias.

Typical audio and video for the Internet and enterprise sce-
nario is still a challenge for today’s speech-recognition technology,
which achieves word accuracies of only 50-70% [1, 2, 3]. To maxi-
mize search accuracy, the probabilistic nature of speech recognition
must be considered [4]. A significant improvement can be achieved
through incorporating word confidence scores and alternative recog-
nition candidates by searching word lattices instead of linear speech-
to-text output [5, 6, 7, 8]. Word lattices are a compact representation
of word candidates and their scores and time information.

On the other hand, there is a request to reuse existing text search
engines, because search engines are complex systems involving sub-
stantial investments in both development and deployment, and also
in order to seamlessly search text and audio/video materials. This
poses two challenges: (a) raw word lattices can be as large as 100
times the size of text or more, which is beyond the range typical text
search engines are optimized for; and (b) a Standard Text Indexer
(STI) assigns a unique word position to each word – thus it cannot
represent alternates with different time boundaries or spanning mul-
tiple words, and phrase queries match words in consecutive positions
– thus the link information in lattices will not be properly used.

In our previous work [7], we have proposed the method named
Time-based Merging for Index (TMI), which significantly reduces
the lattice size while still maintains the search accuracy. However,
TMI lattices contain words spanning multiple positions, which is not
compatible with the STI index structure.

Mangu in [9] proposed to convert lattices to “confusion net-
works” – also known as “sausages,” for Minimal Word Error Rate
decoding. The algorithm was used in [10, 11] for speech index-
ing. Confusion networks align words to word positions, therefore
are compatible with the STI index structure. However, the null links
in confusion networks require special consideration for the phrase
matcher. Besides, it is very inefficient to inverse index and match
those null links due to the huge occurrence list.

In [6] Chelba proposed Position Specific Posterior Lattices
(PSPL). To be compatible with the STI, PSPL enumerate all the
paths and index the word sequence on each path like a text. This
results in a significant amount of position over-generation for each
word, and becomes infeasible for more than a few sentences, thus
chopping of the audio is required. Besides, PSPL cannot represent
time information – which is useful for audio browsing.

In [8] we proposed the method named Time-Anchored Lattice
Expansion (TALE), and showed that TALE can also be represented
by an STI while maintaining the accuracy of raw lattices and keeping
the index size relatively small. In this paper, we compare TALE with
other indexing methods: TMI, PSPL, confusion network, and simple
binning. Our results show that when implementing lattice indexing
by an STI, TALE significantly outperforms all other methods.

This paper is organized as follows. In section 2, we review prior
work of lattice based speech indexing, and section 3 discusses how to
approximate lattices for use with text indexers. Section 4 introduces
the TALE method, section 5 presents experimental results, and sec-
tion 6 concludes the paper.

2. LATTICE-BASED KEYWORD SPOTTING

We first recapitulate previous work on lattice-based search. A word
lattice L = (N ,A, nenter, nexit) is a weighted directed acyclic
graph (DAG) where arcs A represent word hypotheses with recog-
nizer scores, and nodes N the connections between them, encoding
times and possibly context conditions. 1 nenter and nexit ∈ N are
the unique initial and final node, respectively. The recognizer score
of a word hypothesis is used as the arc weight:

qns,w,ne = p
1
λ (O(tns ...tne)|ns, w, ne) · P (w|ns),

where p(O(tns ...tne)|ns, w, ne) is the likelihood for acoustic ob-
servation O(tns ...tne) given word w, its time boundaries (ts, te),

1Alternative definitions of lattices are possible, e.g. nodes representing
words and arcs representing word transitions.

52481-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



and its cross-word triphone context (ns, ne). P (w|ns) is the langua-
ge-model (LM) probability of word w to follow its LM history (en-
coded in ns). λ is the well-known LM weight.2Consider qns,w,ne =
0 for non-existent arcs.

The lattice representation allows to answer one question of inter-
est: Given our observed audio recording O, what is the probability
P (∗-ts-w-te-∗|O) that a particular word w was spoken at a partic-
ular time ts...te? This quantity is called the word posterior prob-
ability. Despite its name, it is defined over paths, and ∗-ts-w-te-∗
shall denote the set of paths that contain w with boundaries ts and
te. To compute it, we sum over all nodes (ns, ne) with the given
time points (ts, te):3

P (∗-ts-w-te-∗|O) =
∑

(ns,ne):
tns=ts∧tne=te

P (∗-ns-w-ne-∗|O),

where the arc posterior P (∗-ns-w-ne-∗|O) is computed as:

P (∗-ns-w-ne-∗|O) =
αns · qns,w,ne · βne

βnenter

and the forward probability αns and backward probability βne rep-
resent the sum over all paths from sentence start nenter to ns and
ne to sentence end nexit, respectively. They can be computed con-
veniently with the forward-backward recursion [12]. βnenter is the
total probability over all paths.

Relevance-ranking formulas often use the term frequency TFw

(per-document keyword occurrence). Its expected value can be com-
puted from the lattice as:

Ew|O{TFw} =
∑

∀m,n0...nm:
n0=nenter∧
nm=nexit

P (n0-w1-n1-...-wm-nm) ·
∑

∀i:wi=w

1

=
∑

∀n,n′
P (∗-n-w-n′-∗|O)

One would also want to answer the same question for multi-word se-
quences (w1w2...wm), not only to support explicitly quoted phrase
queries, but also because sequence matches are significantly more
accurate, and query terms often occur in sequence (implicit phrases).
The phrase posterior P (∗-ts-w1...wm-te-∗|O) can be computed by
summing over all m-arc paths with the given boundaries ts and te:

P (∗-ts-w1...wm-te-∗|O) =
∑

∀m,n0...nm:
tn0=ts∧
tnm=te

P (∗-n0-w1-n1-...-wm-nm-∗|O)

P (∗-n0-w1-n1-...-wm-nm-∗|O) =

αn0

m∏
i=1

qni−1,wi,niβnm

βnenter

In this paper, we actually use an equivalent, more convenient rep-
resentation, which we call the posterior lattice. In a posterior lat-
tice, arc weights are not qns,w,ne but directly the pre-computed arc
posteriors P (∗-ns-w-ne-∗|O). This representation still allows exact
computation of phrase posteriors:

2Despite its name, the function of the LM weight is now widely consid-
ered to be to flatten acoustic emission probabilities. This matters when sums
of path probabilities are taken instead of just determining the best path.

3In most applications, one would also relax the time boundaries, e.g. ex-
tending the sum to include alternate boundaries with significant overlap.

P (∗-n0-w1-n1-...-wm-nm-∗|O) =

m∏
i=1

P (∗-ni−1-wi-ni-∗|O)

m−1∏
i=1

P (∗-ni-∗|O)

with P (∗-n-∗|O) =
αnβn

βnenter

=
∑

∀n′

∑

∀w

P (∗-n-w-n′-∗|O)

We call the new term P (∗-n-∗|O) node posterior4. The primary ad-
vantage of the posterior representation is that posteriors are resilient
to approximations like aggressive quantization and merging of alter-
nates with non-identical time boundaries, and they allow comparing
arcs with different time durations and temporal splitting e.g. com-
pound words. Further, the node posteriors turn out to be uncritical
and can be replaced by a constant in our scenario.

3. APPROXIMATING LATTICES FOR USE WITH
STANDARD TEXT INDEXERS

This section discusses the problem of how to represent or approxi-
mate word lattices such that they can be indexed with an STI.

To implement lattice indexing with an STI, words must be
aligned to word positions, forming a sausage-like lattice. Word pos-
teriors have to be stored e.g. as part of the supplementary “ranking
information” and must be used by the ranker. Node times are needed
only for the result display, and are not stored in the inverted index.

To have the ranker use posteriors can be achieved by a trick.
Typical indexer designs use the “ranking information” as an abstract
type index into a weight table [13]. To use posteriors in ranking,
we’d just need to change the weight table accordingly. Thus, the
remaining issue is phrase matching.

An STI phrase matcher requires words belonging to phrases to
be in consecutive word positions, i.e. some words must be aligned to
multiple slots (over-generation). Obviously, excessive over-genera-
tion leads to high false alarm rate, and large index size. We have to
set priorities.

We propose the following criterions for the task: (a) retain the
expected term frequencies Ew|O{TFw} (they matter for ranking);
(b) keep time points of individual hits accurate enough to allow play-
back; (c) have all phrases up to three words in consecutive word po-
sitions; (d) keep the index size reasonable. The next section will
introduce our solution.

4. TIME-ANCHORED LATTICE EXPANSION

First, we choose the time boundaries of the best path as “anchor
points” t0...tT , and align each node n to the closest anchor point ti,
denoted by i = sn. Each word is also aligned to a word position by
its starting node. We call this “binning.”

Binning itself does not keep phrases in consecutive word posi-
tions. To realize that, we introduce the “Δδ-Expansion”.

Define the conditional probability that word w happens as the
δ-th path token after a given node n:

P (w|n, δ, O) =

∑
∀ni,wi:

i=1...δ∧wδ=w

P (∗-n-w1-n1-...-w-nδ-∗|O)

P (∗-n-∗|O)
,

“Δδ-Expansion” computes the probability distribution for slot i of
word w as δ-th token in phrase:

Pδ(w|i, O) =
∑

∀n:sn+δ=i

P (∗-n-∗|O) · P (w|n, δ, O).

4In [5], a similar concept is implemented by weight pushing.

5249



It is easy to see that Ew|O{TFw} remains unchanged for all w. Ob-
viously, binning is equivalent to Δ0-Expansion.

To guarantee to retain all M -word phrases in consecutive slots,
we interpolate multiple Δδ-Expansions:

P (w|i, O) =

M−1∑

δ=0

αδ · Pδ(w|i, O),

with
∑

αδ = 1. It can be shown that any M -word phrases will
appear in consecutive slots with this merging. δ can also be negative,
which means expanding words left to the given node. We actually
use Δ−1, Δ0 and Δ1 in our experiments to keep all the trigrams.
The weights αδ would ideally be optimized on a development set to
maximize the overall accuracy, but it is not necessary: Experiments
show that using equal weights yields almost as good result as full
lattices. The time information is retained by the anchor points. We
name this method Time-Anchored Lattice Expansion (TALE).

5. EXPERIMENTAL RESULTS

5.1. Setup

In [8], we have evaluated TALE on four production-size corpora:
lectures, conversations, meetings, and voicemails, totaling 600
hours. In this paper, due to limited space, we only report results
on the lecture set, but the conclusion is consistent across other sets.

The lecture set – MIT iCampus lectures [3] – is 170 hours long
with 169 lectures. The whole audio was pre-segmented into 65927
sentences. Raw lattices were generated with a speaker-independent
LVCSR system. The acoustic model was trained on the 1700-hour
Switchboard “Fisher” telephone-speech set [2]. Due to limited LM
data for lectures, we partitioned the test set into 10 parts, and recog-
nized each part with an LM trained on the transcripts of the remain-
ing 9 parts, keeping training and test disjunct. The Word Error Rate
(WER) for the test set is 46.6%.

We evaluate our method on keyword search without relevance
weighting. We include multi-word phrase queries, single-word que-
ries, and two-term AND queries (each term can be single or multi-
word). The keyword set is synthetic and consists of noun phrases
chosen from the transcripts such that for each query there are at most
two matching documents. Three accuracy metrics are used:

• FOM: The NIST Figure Of Merit defined as the detection/fal-
se-alarm curve averaged over [0..10] false alarms per key-
word per h hours. Instead of the original h = 1, we use
h=data set duration. The time tolerance range for a match is
extended to the whole sentence, so that PSPL (which has no
time information for individual words) can also be evaluated;

• mAP: mean average precision, ranking documents by the
probability that the single or multi-word query Q occurs in
the document at least once:

P (Q in doc) = 1 −
∏

∀hits h for Q

(1 − P (h|doc)) (1)

and for AND queries:

P (X AND Y in doc) = P (X in doc) · P (Y in doc) (2)

• R75/R50: document Recall at Precision 75%; and at 50%
for single-word queries, for which it proved difficult to get
enough observation points above 75%.

Both mAP and R75 rely on a joint ranking among all query
terms. Therefore we normalize the word and phrase posteriors using
three 2-state Hidden-State Maximum-Entropy models [14] for sin-
gle words, two-word phrases, and longer phrases, respectively. This
improves AND-query results by up to 5 points.

5.2. Speech-To-Text Transcript vs. Lattice Indexing

In Table 1, the first and second rows compare accuracies for the sim-
plest approach, indexing speech-to-text (STT) plain-text transcripts,
with raw lattice indexing. To be able to compare transcript results
with lattices, we attached posteriors from the lattice to each tran-
script word. (Without that, there is only one Precision/Recall point,
for which the results are very similar to the RP result.)

The first three result columns show accuracies for phrase
queries. From STT transcripts to raw lattice, a significant improve-
ment is observed. For FOM and mAP, relative improvements are
63 and 57%, respectively, and 28% for R75. For the single-word
queries (next three columns), improvements for FOM and mAP are
in the 30% range, and none for R50. The next three columns show
AND-query results. Both mAP and R75 increase by a solid 2.4 times.

5.3. Lattice Indexing Methods

In the next experiment, we compare different lattice indexing meth-
ods, which is shown in the second block of Table 1. Correspond-
ing index structure and phrase matching algorithm are used for each
method. PSPL and TALE use STI directly. TMI has an index keep-
ing extent for each word, which are used in phrase matching. Confu-
sion networks have null links skipable. We also compare the binning
method introduced in section 4. As binning breaks phrases, a special
phrase matcher called D1 matching is used , which allows consecu-
tive words to be in same slot or with one extra slot in between (D1
here for distance-one).

The table shows that, for FOM and mAP, which are principally
dominated by recall, all methods have comparable performance with
raw lattices. Interestingly, for phrase and AND queries, indexed lat-
tices are even better than raw lattices, because the indexing methods
introduce (incorrect) extra paths, which results in better recalls.

For R75/R50, which emphasizes on precision, we observe sig-
nificant degradation for PSPL. This is because PSPL distribute a
single word probability into too many slots, thus the probabilities
calculated in Eq. 1, 2 are seriously distorted. (Note that for PSPL,
the ETFs of words are retained as well). There is also a smaller de-
crease on phrase and AND queries for binning, which is caused by
the over-tolerance from D1 matching.

The last column shows the index size. Binning and confusion
networks have the smallest size down to 20, while PSPL have as
high as 329 due to excessive over-generation.

5.4. Index Pruning

In the third experiment, we prune index sizes to about 10 index en-
tries per spoken word for each method. For the confusion networks,
the pruning is applied to the raw lattices with respect to likelihood
scores, while for the others the pruning is on the posterior scores
after lattice conversion.

For FOM and mAP, though we observe 2-3 points decrease for
phrase queries and 4-6 points for AND queries with most methods,
the accuracies are still comparable to raw lattices, excepte for PSPL,
which is about 5 points worse than raw lattices for phrase queries and
10 points worse for AND queries, due to a much larger size reduc-
tion. For R75/R50, the degradations are smaller (in some condition
even better), showing that the pruning has less impact on precision.

5250



Table 1. Search results for phrase queries, single-word queries, and two-term queries of the form X AND Y where X and Y may be phrases.
Shown are Figure of Merit (FOM) per keyword hit, per-document mean average precision (mAP), and per-document Recall at a certain
Precision cut-off (RP) for P=75% and 50% for multi and single-word queries, respectively. “Index size” is index entries per spoken word.

query type: phrase queries single-word queries AND queries index size
configuration FOM mAP R75 FOM mAP R50 mAP R75 edg/wd nd/wd

STT transcript with confidence 40.3 42.7 43.4 36.0 44.2 45.2 26.1 26.1 1.0 1.1
raw lattice 65.6 67.2 55.7 48.2 55.9 45.4 63.3 61.6 1617 239.6

PSPL 67.6 70.5 47.7 48.2 53.8 27.6 69.6 59.7 329.0 2.5
TMI 67.9 69.6 58.0 48.2 55.9 45.4 66.3 63.9 46.3 2.9
confusion network ∗ 67.2 69.8 57.1 47.5 55.4 45.0 66.6 61.6 23.8 3.7
binning 67.2 69.2 52.8 48.2 55.9 45.4 67.2 62.5 20.1 1.1
TALE (binning with expansion) 68.0 70.2 57.9 48.2 55.5 44.7 67.8 63.7 36.9 1.2

pruning to 10 edges per word
PSPL 60.6 63.4 50.6 47.2 53.1 42.1 53.8 54.3 12.4 2.5
TMI 65.1 67.1 58.3 48.0 55.4 45.4 60.4 61.0 10.0 1.7
confusion network 65.7 68.0 57.7 48.0 55.5 45.5 62.3 61.9 9.4 1.9
binning 64.8 66.9 53.1 48.1 55.5 45.4 61.5 61.3 7.9 1.1
TALE (binning with expansion) 65.1 67.5 57.9 48.0 55.1 44.8 61.6 61.7 11.8 1.2

pruning to 10 edges per word, with standard text index structure and standard phrase matcher
PSPL 60.6 63.4 50.6 47.2 53.1 42.1 53.8 54.3 12.4 2.5
confusion network 26.7 28.4 25.1 48.0 55.5 45.5 17.9 17.8 9.4 1.9
binning 61.3 63.6 56.9 48.1 55.5 45.4 56.1 56.5 7.9 1.1
TALE (binning with expansion) 65.1 67.5 57.9 48.0 55.1 44.8 61.6 61.7 11.8 1.2
∗ About 1% segments failed due to huge memory complexity.

5.5. Implemented with Standard Text Indexers

In the last experiment, we implement lattice indexing with an STI,
which is the primary goal of this paper. Obviously only phrase
queries and AND queries will be affected. TMI is excluded in this
experiment as the index structure is not compatible.

As the last block of the table shows, confusion networks’ per-
formance drops down dramatically because null links are not con-
sidered by the STI phrase matcher – all metrics go down below 30%
for phrase queries, and below 20% for AND queries. For binning,
about 4-point accuracy drops are observed on most metrics due to not
using D1 matching. Results for PSPL and TALE are not changed.
Compared with other methods, TALE are significantly better.

6. CONCLUSION

We addressed the problem of how to represent or approximate word
lattices such that they can be indexed with existing text indexers. We
proposed a method named TALE (Time-Anchored Lattice Expan-
sion), which (a) retains rough time information for audio browsing;
(b) keeps expected term frequency for each word (they matter for
ranking); (c) is guaranteed to keep phrases up to 3 words in consecu-
tive slots (thus a text phrase-matcher can find them); (d) keeps index
size reasonable.

On a 170-hour lecture set, we compare TALE with other lat-
tice indexing methods: PSPL, TMI, confusion network, and binning.
With corresponding index structures and phrase matchers, all meth-
ods achieve accuracies comparable to searching raw lattices (except
that PSPL were 5-10 points worse for phrase and AND queries when
pruned to 10 index entries per spoken word). But when implemented
with a Standard Text Indexer, TALE are significantly better than all
other methods.

Compared to indexing linear text, the presented TALE method
can achieve an accuracy improvements of 30-60% for multi-word
phrase searches, and of 130% for two-term AND queries, which rely
more on recall. Most importantly, this improvement can be achieved
with a Standard Text Indexer.

7. REFERENCES

[1] M. Padmanabhan, G. Saon, J. Huang, B. Kingsbury, and L. Mangu, Au-
tomatic Speech Recognition Performance on a Voicemail Transcription
Task. IEEE Trans. on Speech and Audio Processing, Vol. 10, No. 7, 2002.

[2] G. Evermann, H. Y. Chan, M. J. F. Gales, B. Jia, X. Liu, D. Mrva,
K. C. Sim, L. Wang, P. C. Woodland, K. Yu, Development of the 2004
CU-HTK English CTS Systems Using More Than Two Thousand Hours
of Data. Proc. Fall 2004 Rich Transcription Workshop (RT-04), 2004.

[3] J. Glass, T. J. Hazen, L. Hetherington, C. Wang, Analysis and Pro-
cessing of Lecture Audio data: Preliminary investigation. Proc. HLT-
NAACL’2004 Workshop: Interdisciplinary Approaches to Speech Index-
ing and Retrieval, Boston, 2004.

[4] P. Yu, K. J. Chen, C. Y. Ma, F. Seide, Vocabulary-Independent Indexing
of Spontaneous Speech, IEEE Transactions on Speech and Audio Pro-
cessing, Vol.13, No.5.

[5] M. Saraclar, R. Sproat, Lattice-based search for spoken utterance re-
trieval. Proc. HLT’2004, Boston, 2004.

[6] C. Chelba and A. Acero, Position specific posterior lattices for indexing
speech. Proc. ACL’2005, Ann Arbor, 2005.

[7] Z. Y. Zhou, P. Yu, C. Chelba, F. Seide, Towards Spoken-Document Re-
trieval for the Internet: Lattice Indexing For Large-Scale Web-Search Ar-
chitectures. Proc. HLT’06, New York, 2006.

[8] F. Seide, P. Yu, Y. Shi, Towards Spoken-Document Retrieval for the En-
terprise: Approximate Word-Lattice Indexing with Text Indexers, to ap-
pear in Proc. ASRU’2007, Kyoto, 2007.

[9] L. Mangu, E. Brill, A. Stolcke, Finding Consensus in Speech Recog-
nition: Word Error Minimization and Other Applications of Confusion
Networks. Computer, Speech and Language, 14(4):373-400.

[10] T. Hori, I. L. Hetherington, T. J. Hazen, and J. R. Glass, Open-
Vocabulary Spoken Utterance Retrieval Using Confusion Networks,
Proc. ICASSP’2007, Honolulu, 2007.

[11] J. Shao, Q. W. Zhao, P. Y. Zhang, Z. J. Liu, Y. H. Yan, A Fast Fuzzy
Keyword Spotting Algorithm Based on Syllable Confusion Network,
Proc. InterSpeech’2007, Antwerp, 2007.

[12] F. Wessel, R. Schlüter, and H. Ney, Using posterior word probabilities
for improved speech recognition. Proc. ICASSP’2000, Istanbul, 2000.

[13] S. Brin and L. Page, The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems, 30(1-7):107-117.

[14] P. Yu, J. Xu, G. L. Zhang, Y. C. Chang, and F. Seide, A Hidden-
State Maximum Entropy Model for Word Confidence Estimation.
Proc. ICASSP’2007, Honolulu, 2007.

5251


