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ABSTRACT

The ability of practical biometric systems to recognize a large
number of subjects is constrained by a variety of factors that
include a choice of a source encoding technique, quality of
images, complexity and variability of underlying patterns and
of collected data. Given a source encoding technique, the re-
maining factors can be attributed to distortions due to a bio-
metric recognition channel. In this work, we define empirical
mutual information and recognition rate and evaluate empiri-
cal recognition capacity of biometric systems under the con-
straint of two global encoding techniques: Principal Compo-
nent Analysis (PCA) and Independent Component Analysis
(ICA). The empirical capacity of biometric systems is numer-
ically evaluated as a point of intersection of the empirical mu-
tual information rate curve plotted as a function of the recog-
nition rate and the diagonal line bisecting the first quadrant.
The developed methodology is applied to find the empirical
capacity of different recognition channels formed during ac-
quisition of different iris and face databases.

Index Terms— Biometrics, Information theory, Stochastic
Model, Capacity

1. INTRODUCTION

In many large scale biometric-based recognition problems,
knowledge of the limiting capabilities of underlying recog-
nition systems is critical. These limits, however, are deter-
mined by a variety of factors including source coding tech-
niques used to process data, quality, complexity, and variabil-
ity of the collected data. Given an encoding technique, the re-
maining factors can be attributed to a recognition channel in-
troduced and characterized by Schmid and O’Sullivan in [1].
Similar to a communication channel, a recognition channel is
characterized by its capacity, with the difference being recog-
nition capacity. In a biometric-based recognition problem,
recognition capacity can be thought as being the maximum
number of classes that can be successfully recognized asymp-
totically with probability of recognition error close to zero
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when the number of informative samples gets large. Thus,
capacity can be viewed as a measure of performance that can
be used to evaluate capabilities of large scale recognition sys-
tems. Also, since the maximum number of biometric classes
that can be successfully recognized is directly related to dis-
tortions and noise present in the images or signals submitted
for recognition, we propose to treat capacity as a measure of
overall quality of data in a given database.

In this work, we introduce the concepts of empirical mutual
information rate and constrained empirical capacity. We fur-
ther develop and evaluate stochastic models for data encoded
using global PCA and ICA. These models are applied to eval-
uate the empirical capacity of iris and face-based recognition
systems. The evaluation is performed using data from six
public databases.

2. RECOGNITION CAPACITY

This section summarizes results from [1]. Suppose that a
biometric database is composed of templates (processed and
encoded images) X(1), . . . ,X(M) of M distinct biometric
classes. Each template, X(m), is a column vector of length
n. Assume that Y is a template containing information about
a biometric class to be identified. If the templates in the data-
base are modeled as realizations of M independent and iden-
tically distributed (i.i.d.) random vectors and the template
submitted for recognition is viewed as a noisy realization of
one of database templates, a template in the database and the
template submitted for identification will have some informa-
tion in common and thus can be described by a joint proba-
bility density function pX,Y. Otherwise, the templates in the
database and the query template do not have information in
common and thus can be described by the product probability
density function pXpY with pX and pY being marginals of
pX,Y.

Acquired encoded data often allow probabilistic descrip-
tion. Provided that encoded templates are independent or
weakly dependent and can be treated as almost identically
distributed, the evaluated joint and marginal probability dis-
tributions for a biometric template to be recognized and for a
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template from a database can then be used to form the infor-
mation density,

in =
1

n
log

pX,Y

pXpY

. (1)

When the template distributions are known, the constrained
recognition capacity is the mutual information rate defined as

Ī(X,Y ) = lim
n→∞

E[in], (2)

where the expected value is with respect to the joint probabil-
ity density function.

In practical cases, given encoded data (templates), their
probability densities can be empirically evaluated using clas-
sical parametric and modern nonparametric estimation tech-
niques. Then the expression under the expected value in (2)
will contain estimated parameters and will not present a deter-
ministic sequence any more. Thus, in practice, we deal with
random sequences.

3. PCA-BASED EMPIRICAL RECOGNITION
CAPACITY

In this section we provide an expression for the empirical mu-
tual information rate characterizing a noisy biometric channel
under the constraint of Principal Component Analysis (PCA)-
encoded data and describe how to evaluate the empirical ca-
pacity of the channel.

3.1. Gaussian Model for PCA encoded data

Consider a biometric database with M classes. We assume
that PCA templates X(m), m = 1, 2, . . . , M, stored in the
database are realizations of i.i.d. vector processes. The
processes are Gaussian with zero mean and unknown diago-
nal covariance matrix Λ. The elements along the diagonal are
the eigenvalues λ1, λ2, ..., λn of a scatter matrix Σ estimated
using images of M biometric classes (training data).

We model the query PCA-encoded image as a realization of
one of database templates contaminated with a realization of
zero mean Gaussian noise with independent components hav-
ing the unknown variances σ2

1
, σ2

2
, ..., σ2

n. Thus Y = X+N,
where N ∼ N (0, ΣN ). ΣN is an unknown diagonal covari-
ance matrix. In our case the noisy candidate Y is one of the
encoded noisy images from the testing set. During the iden-
tification the noisy template will be compared against all the
templates X(m), m = 1, 2, . . . , M, in the database. Since
the templates from a biometric library and a query template
are realizations of the processes with unknown parameters,
the parameters are estimated using training data. Then in
place of the expected value in the right side of (2) we intro-
duce the empirical mutual information rate:

Īn =
1

n
EX,Y{in(Λ,ΣN )} =

1

2n

n∑
k=1

log

(
1 +

λk

σ2

k

)
, (3)

where the expected value is with respect to the joint proba-
bility density function and σ2

k and λk, k = 1, . . . , n, are the
estimated variances of the noise and estimated eigenvalues.

We define the recognition rate as R = log(M)/n, where
M is the number of biometric classes to recognize and n is the
template length. If we had a sequence of PCA codes (n, 2nR)
with the recognition rate R, we would be able to evaluate em-
pirically the trend of the sequence of Īn as a function of the
rate R. Then the empirical recognition capacity can be ob-
tained as a point of intersection between the empirical mu-
tual information curve plotted as a function of the recognition
rate and the diagonal line bisecting the first quadrant. This
strategy is valid provided that the empirical sequence in (3) is
ergodic.

In this work, to find the empirical recognition capacity at
a given image resolution, we analyze the dependence of the
number of essential PCA components on the resolution of un-
wrapped interpolated iris images and on face images.

3.2. Databases

All experiments are performed using data from six publicly
available datasets: (1) CASIA-III iris database provided by
the Chinese Academy of Sciences, (2) an iris database of im-
ages collected at West Virginia University (WVU), (3) BATH
iris database provided by the University of Bath, (4) ICE,
Phase-I dataset used by the NIST in Phase-I of the Iris Chal-
lenge Evaluation 2005, (5) FRGC version 1 face database
used in the 2006 Face Recognition Grand Challenge (FRGC)
Competition, and (6) Yale database, a database of black-and-
white 2D frontal view face images.

3.3. Case I: High Pixel Count

In this case, the resolution of a biometric image r is large
compared to the number of classes M. Therefore, the matri-
ces Λ and ΣN are not well estimated. The results obtained in
this subsection are not the limiting capacity values. We find
values of the empirical capacity per component by analyzing
the joint trend of eigenvalues and noise variances as the num-
ber of biometric classes and template length increase.

In our experiments, we follow the traditional PCA
method that produces estimates of n largest eigenvalues
λ1, λ2, . . . , λn and n corresponding eigenvectors of the em-
pirical covariance matrix formed using images of M objects.

The values of the empirical capacity per component Īn for
the case r >> M are summarized in the fourth column of
Table 1. The data can be interpreted as characteristics of the
overall quality of different biometric databases.

3.4. Case II: Low Pixel Count

In this case the number of biometric classes M is much larger
than the resolution r of images. Therefore, we obtain reli-
able estimates of the matrices Λ and ΣN , and thus can appeal
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Table 1. Empirical Capacity per component of Biometric
Channels using PCA encoded data for the case M << r.

Dataset M r Īn, nats/pc
ICE 2005 Iris 108 11520 0.4305
WVU Iris 108 46080 0.3198
BATH Iris 50 11520 1.1284
CASIA-III Iris 59 46080 0.5030
FRGC 2006 Face 108 32256 0.3537
Yale Face 38 32256 0.4784

to the concept of empirical capacity. To form a large num-
ber of classes, we involve a dataset of synthetic iris images
generated at WVU [3]. The total number of classes currently
supported by this dataset is 10,000. To establish the needed
relationship between the number of classes and resolution of
data, that is, to ensure that M >> r, we downsample seg-
mented transformed iris images to the size 8×90, 8×45, and
2 × 22. We calculate the PCA-based empirical mutual infor-
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Fig. 1. PCA-based empirical mutual information rate at three
resolution levels (2× 22, 8× 45, 8× 90) as a function of the
recognition rate, R for the case M >> r.

mation rate for different increasing values of the recognition
rate, R (see Fig. 1). There are three plots, each parameterized
by a specified resolution. The empirical capacity is calculated
as the point of intersection between the empirical mutual in-
formation rate parameterized by a resolution and a diagonal
curve bisecting the first quadrant. The empirical capacity val-
ues at the resolutions 8 × 90, 8 × 45, and 2 × 22 are 1.3,
1.5, and 0.4, respectively. As expected, the capacity of PCA-
based recognition system evaluated using the images at reso-
lution 8 × 45 and 8 × 90 is higher compared to the capacity
of PCA-based recognition system at resolution 2 × 22.

4. ICA-BASED RECOGNITION CAPACITY

In this section we evaluate the empirical constrained capac-
ity of a noisy biometric-based recognition channel under the

constraint of ICA-encoded data.

4.1. Bessel K Model for ICA encoded data

Let X(1),X(2), . . . ,X(M) be n-dimensional vectors of ICA
components. Each vector is a projection of an image from
an individual biometric class onto the space formed by the
columns of mixing matrix [2]. Suppose that the vectors are
independent and identically distributed each described by a
Bessel K distribution. To be more specific,

X(m) =
√

G(m)Z(m) + μ(m), m = 1, 2, . . . , M, (4)

where Z(m) is the Gaussian distributed vector with zero
mean and unknown covariance matrix Σz , G(m) is a gamma-
distributed random variable with unknown parameters α and
θ and μ(m) is the mean vector of X(m). The vector Z(m)
and the scalar G(m) are independent.

A noisy ICA template presented for identification is mod-
eled as a Bessel K distributed vector augmented with indepen-
dent Gaussian noise with zero mean and diagonal covariance
matrix ΣN with unknown variances σ2

1
, σ2

2
, ..., σ2

n, that is,
Y = XY +N. Since for a given gain G = g, Bessel K distri-
bution is a scaled Gaussian distribution, the empirical mutual
information rate can be evaluated using the method of iterated
expectations. Under the hypothesis that X and Y have a sig-
nature in common, the combined vector [XT ,YT ]T , given
gain values G = g and GY = gY , is Gaussian distributed
with zero mean and covariance matrix R1 with unknown Σz

and ΣN

R1 =

[
gΣZ gΣZ

gΣZ gΣZ + ΣN

]
.

Under the hypothesis that X and Y do not have a signature in
common, the vector [XT ,YT ]T , conditioned on gain vectors
G = g and GY = gY , is Gaussian distributed with zero mean
and unknown block diagonal covariance matrix R0. The ma-
trix R0 is the matrix R1 with off diagonal blocks set to zeros.

Taking in account that G and GY are i.i.d. the general ex-
pression for the empirical mutual information rate is then

Īn =
1

2n

n∑
k=1

{ [
EG[g] + αθσ2

k

]
EGY

[
1

gY + αθσ2

k

]}

+
1

2n

n∑
k=1

{
EGY

[
log

(
1 +

gY

αθσ2

k

)]}
−

1

2
, (5)

where the parameters α, θ, are the estimated parameters of
a Bessel K distribution fitted in a set composed of all coeffi-
cients of M concatenated ICA templates, obtained during the
training stage. In this case, we practically consider σ2

k = σ2

0

for k = 1, 2, . . . , n. The noise power σ2

0
is estimated in-

volving additional training templates. Since in a large scale
database the number of classes M is very large, the number
of independent components n is determined by the resolution
of images.
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For a fixed image resolution EG[g] = αθ, the expression
(5) reduces to

Īn =
1

2

[
S1(1 + σ2

0)α

Γ(α)
+

S2

Γ(α)
− 1

]
, (6)

where S1 and S2 are given by

S1 =

∫ +∞

0

tα−1

t + ασ2
0

exp(−t) dt,

S2 =

∫ +∞

0

ln

(
1 +

t

ασ2
0

)
tα−1 exp(−t)dt.

These two integrals cannot be written in closed form and are
evaluated numerically. Note from (6) that the empirical mu-
tual information rate is a function of the shape parameter α
of the gamma distributed variables G or GY and of the noise
level σ2

0 . However, it does not depend on the parameter θ.

4.2. Case I: High Pixel Count

We first consider the case of r >> M. M images (one per
class) are selected to train the global ICA-based encoding sys-
tem. As a first step we perform PCA encoding. Then the es-
timated matrices of eigenvalues and eigenvectors are used to
whiten the matrix representing concatenated training images.
Later FastICA algorithm [2] is applied to the new matrix re-
sulting in M ICA templates. The values of the empirical ca-
pacity (in nats per independent component) are summarized
in the fourth column of Table 2. Similarly to the PCA case

Table 2. Empirical Capacity per component of Biometric
Channels using ICA encoded data for the case M << r.

Dataset M r Īn, nats/ic
ICE 2005 Iris 108 11520 0.7650
WVU Iris 108 46080 0.5301
BATH Iris 50 11520 2.9483
CASIA-III Iris 59 46080 0.8102
FRGC 2006 Face 108 32256 0.5147
Yale Face 38 32256 0.5952

high values of Īn indicate good quality dataset, low values of
Īn indicate low quality dataset.

4.3. Case II: Low Pixel Count

Similarly to evaluating the empirical capacity of PCA-based
recognition systems we consider the synthetic iris dataset
composed of 10,000 iris classes. To ensure that M >> r, we
downsample segmented transformed iris images. The global
ICA algorithm is trained on a single image per class. We cal-
culate the empirical mutual information rate using expression
(6) for different increasing values of the recognition rate, R.

Fig. 2 displays the plot of the empirical mutual information
rate parameterized by a given image resolution as a function
of the recognition rate R. From the figure we can find the em-
pirical recognition capacity evaluated at different resolution
levels. The empirical capacity at resolution 2 × 22 is approx-
imately 0.4. We were unable to obtain the values of the em-
pirical capacity at the other resolutions, since the integrals S1

and S2 diverge at high values of the recognition rate.
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Fig. 2. Shown is the ICA-based empirical mutual information
rate at three resolution levels (2× 22, 8× 45, 8× 90) plotted
as a function of the recognition rate R for the case M >> r.

5. SUMMARY

In this work, we proposed two stochastic models describ-
ing PCA and ICA encoded biometric data. These models
were applied to evaluate the constrained empirical capac-
ity of recognition channels formed during the collection of
data. Four iris databases (CASIA-III, WVU, BATH, and
ICE 2005), two face database (FRGC 2006 and Yale), and
a medium size dataset of synthetic irises generated at WVU
were involved.
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