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ABSTRACT

This paper explores the goal of applying Active Shape
Models (ASMs) on the eye images to classify eye shapes and
identify whether the images belong from left or right irises.
In many applications, particular to data collected from single
eye capture devices (such as the PIER mobile iris image
acquisition device), it is of importance to be able to sort and
correct mislabeled collected data. ASMs have traditionally
been applied for classification or identification of a wide
variety of objects ranging from faces, assembly line objects
to biomedical objects such as bone structures (like the spine
etc). In this paper we apply and evaluate ASM models to fit
on the eye shape to determine if the image belongs to a left
or right eye. The approach we employ is based on building 2
ASM models, one for the left eye and one for right eye. The
best fit model is chosen as the result. Our preliminary
evaluation using vanilla ASM shows that preprocessing
techniques  like illumination  compensation, shape
normalization, and accurate Iris detection are key steps
required to improve the classification performance.

Index Terms— Image Processing, Image Shape
Analysis, Pattern Classification, Pattern Recognition,
Correlation

1. INTRODUCTION

Automatic machine recognition of people from still images
is an active research area due to the increasing demand for
authentication in commercial and law enforcement
applications. Many iris biometric applications use single iris
acquisition devices (one example is the PIER mobile iris
image acquisition device) where it may be easy to mislabel
the left/right iris, particularly during enrollment process.
Under long enrollment periods and depending on the
environment scenario in some applications it maybe easier to
make mistakes due to human error in the punching in of data
(fatigue, and other external parameters contribute to this). As
an example, we could imagine such a system is used in the
field to capture iris images for security purposes. Existing
systems can be used in law enforcement or commercial
situations to enroll iris images, yet need to be named

1-4244-1484-9/08/$25.00 ©2008 IEEE

5228

correctly when saving the images in the database. We can
imagine that under durations of duress, officers might easily
mislabel the left and right eyes and this can lead to errors
during recognition particularly if this is limited to a
particular eye dataset (left vs right).

In this paper we mainly explore tackling this problem using
Active Shape Models (ASMs) on the iris eye images
obtained from a public database such as NIST’s Iris
Challenge Evaluation (ICE) dataset as well some example
iris images from an LG4000 commercial system. Applying
active shape models on the iris images has its own
challenges unlike applying ASMs on other objects that have
been previously documented (particularly in the medical
field). Non-uniform illumination variations, rotation and
scale changes in the testing set, that were not present in the
training set, were just some of the challenges faced.

2. BACKGROUND

Active Shape Model (ASM) [1] is a linear statistical
modeling method used to interpret shapes in images. It uses
Principal Component Analysis (PCA) on shape features to
capture and represent the shape point variations. The active
shape model fitting process finds the shape which gives the
least approximation error using the model parameters.

The general procedure of an ASM algorithm can be outlined
as follows: an offline model is trained from a set of training
images which have the shape annotated by a human expert.
By analyzing the variations of the shape over the training set,
a model is built which can capture these variations. To
interpret a new image we must find the coefficients which
best match a model instance of the image. Once the model
fitting process is completed, the extracted coefficients from
the fitting process can be wused to classify, make
measurements, or as an input to further processing. Thus an
ASM is a local deformation model constrained by a global
variance model. That is, it allows for variability specific to
the class of objects on which the model is trained.

Suppose we have s sets of points x; which are aligned into a
common co-ordinate frame. These vectors form a distribution
in the 2V dimensional space in which they lie where N is the
number of points. If we can model this distribution, we can
generate new shapes similar to those in the original training
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set and then examine these new shapes to decide whether
they are plausible examples. To simplify the problem, we
first wish to reduce the dimensionality of the data from 2N
to something more manageable. An effective approach is to
apply Principal Component Analysis (PCA) to this data. The
data forms a cloud of points in the 2N-dimensional space,
though by aligning the points they lie in a (2N—4)-
dimensional manifold in this space. PCA computes the main
axes of this point cloud, allowing one to approximate any of
the original points using a model with less than 2N
parameters. Hence by applying PCA to the data set, we can
approximate any of the shapes, x using

x=X+Pb

where P = (pi|p2| . . . [py) is @ matrix containing ¢ eigenvectors
from the data covariance matrix and b is a ¢ dimensional
coefficient vector given by

b=P" (X-X) eeeooiiiiiiiiee2)

The vector b defines the set of parameters of the deformable
model. By varying the elements of b we can vary the shape x
using Eq (1). The variance of the i parameter, b;, across the
training set is given by P1. By applying limits of 43V 1o
the parameter b; we ensure that the shape generated is similar
to those in the original training set.

The model variation corresponding to the i* parameter - b;, is
known as the i mode of the model. The eigenvectors P
defines a rotated co-ordinate frame transformation, aligned
with the cloud of original shape vectors. Thus the vector b
defines points in this rotated frame. Further details of the
fitting are found in [1],[2] and [3].

3. TRAINING THE ASM

The performance of the ASM depends on how well we train
the model by choosing the right design parameters that are:
(1) the number of feature points for controlling the shape,
(2) the number of training images that span the entire range
of possible shapes. In this paper we used NIST’s ICE dataset
for the ASM and also some sample data from an LG4000
camera. The eye images are labeled in the same way as the
face images were labeled in [2]. Figure 2 shows example
images of different total number of labeled landmarks. The
number of landmarks is selected based on the detail required
and the areas of interest. Once the training data is labeled,
the shapes are aligned to a reference shape so that only the
shape variation of the objects is taken into consideration.
We align all the shapes to the mean of the unaligned shapes.
The landmarks are selected such that a larger portion of
landmarks are in areas that have greater distinguishing
characteristics as can be seen in Figure 3.

An example of a descriptive set of labeled points is shown in
Figure 3. Different numbers of landmark vertices were
selected to find the optimum number of landmarks necessary

Figure 2: (a) Example Images with different total number of labeled
points.

Figure 3: Shape points labeled with more points in the interest of
interest.

to describe the iris shape. The optimal number found
empirically, was 20 landmark points, with the side of the eye
image towards the nose more densely land-marked, as the
shape near the tear duct is more discriminative for
determining the eye. This region is also prominently
different for different people as we can observe in Fig 3. An
example of right eye images and left eye images is shown in
Fig 4.
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Figure 4: (a)Example Dataset of Right Eye Shapes (b) Example Dataset of
Left Eye Shapes

For training, a subset of the ICE Database is taken which
consists of 200 ICE images manually divided into 100 left
eye images and 100 right eye images. For testing we used the
remaining ICE dataset and also tested on some sample
images obtained from an LG4000 camera iris acquisition
device.

4. SHAPE FITTING AND RECOGNITION

Active shape models are highly sensitive to the initial
position of the fitting process. If the initial position is not
chosen well, then the model does not converge or fit
correctly. The training dataset ideally should have all
possible shape variations so that the Active Shape Model
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(ASM) can learn the variations effectively. Also, for most
iris images available in the public databases, the focus is on
capturing clear images of the iris and not necessarily
capturing the entire eye shape. Thus we are often left with
images that have part of the eye shape missing and typically
these should not be used for training as any corruption in the
labeling will be learnt by the model.

An eye detector must be first used to localize the eye and
then start the ASM fitting process. One possible eye detector
that can be trained is the Adaboost Haar detector [5]. Then
the ASM is applied to iteratively search for the shape around
the initial estimate. The gray level statistics are used to find
the desired landmarks and a multi-resolution [1] approach is
used to reduce the number of iterations that are needed for a
good fit.

5. SHAPE CLASSIFICATION

Eye shape recognition can be regarded as an application
dependent technique. If the application requires good fitting
with no constraints on real-time execution then it may be
possible to employ complex algorithms or combining and
fusing several recognition algorithms. For the shape to
converge we use the normalized mean gradients of the image
around each landmarked point. We can also use scaled
gradient, raw intensity, scaled intensity or un-normalized
gradient instead of the normalized mean gradient. To find
the closest fit, the following square error function is used
f(d) = (W(d)-Yimean) Cyi \(N()-Yimean) ++vvevvvvvvennnnn 3)
The algorithms are simpler for the purpose of eye shape
classification. There are two methods that can be used: once
Global ASM coefficients are obtained, a support vector
machine (SVM) is used for classification. We see that using
a single global SVM model gives us very good results on
classification of left vs right eyes.
The second method of applying ASM for classification is to
have as many ASM models as there are classes. In our case
that would mean 2 different ASM models and we run both
the ASMs on a test shape to verify which performs better
fitting on the image. Hence for this approach, a quantitative
way of measuring the fitting on the test shape must be
formulated. In figure 5, an example of applying both ASM
models of the Left vs Right eye on a test image of a Left eye
is shown. Clearly the left ASM model performs better fitting
and can be used to identify the test image as a left iris. In
figure 6 we see an example of applying both ASM models
on a test image of a Right Eye. We can see that in each case
the fitting is better for the ASM model belonging to the
correct eye shape, thus individual ASM model fitting
approach provides a robust measure of classification.

5.1 Improving classification Performance

In the case of classification of Left vs Right eyes, we
observe that SVM approach gives us about 100% accuracy
on our dataset. However, to achieve this performance we

Figure 5: (a) Examples of Applying ASM of class 1 (Left Iris) on
test image from class 1 (Left Iris). (b) Examples of Applying ASM
of class 2 (Right Iris ASM) on test image from class 1 (Left Iris).

Figure 6: (a) Example of Applying ASM of class 1(Left Iris ASM)
on test image from class 2 (Right iris). (b) Examples of Applying
ASM of class 2(Right iris)) on test image from class 2 (Right iris).

Figure 7: Correlation filter sub-windows.

had to manually initialize the ASM. We also tried to classify
images by implementing correlation filters on the test images
in small sub-windows around each landmark in order to
measure the fitting process. Using this modified ASM fitting
approach gave us better results in our dataset where we did
not manually initialize the ASM. We built an Optimal Trade
off-Synthetic Discriminant Filters (OT-SDF) filters[9]
around each landmark around a small region of size 50x100
or 100x100. We found that the window size of 100 x 100
gives us the best performance in this database. An example
of the windows on the fitted shape of a test image is as
shown in Fig 7.

Once the ASM models of each class are used to find the
shape in the test image, OT-SDF correlation filters were
used at each landmark iteratively and finally a score of how
well that landmark actually matches the shape (based on the
correlation output) is obtained. The overall score is
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computed as an average of all the landmark fittings and is
used for classification based on a simple comparison of
which ASM model yields a higher score. In this case
classification based on single threshold comparisons may
not work under all conditions. Instead we compute a relative
likelihood ratio using the correlation likelihood from the
Left-Eye ASM model and the Right-Eye ASM model.

The below Table shows the results of applying ASM on ICE
database where the model is not manually initialized and on
the LG images where the test images are centered and all of
the same scale and hence give better results. The results with
ICE are not as good as the LG images since the ICE images
are not rotation invariant and no manual initialization has
been done. Also the training set does not contain all the
variations present in the test set.

Iris Images | Test Images | Correctly %
classified classified
Left - ICE [ 1528 955 62.5%
Right - ICE | 1425 964 67.7%
Left- LG 24 22 91%
Right - LG | 28 25 89%

Table 1: automatic fitting of vanilla ASM test results on
ICE images and LG iris Images

Figures 8 and Figures 9 below show some examples of good
convergence and bad convergence respectively which is key
to a good classification result. Here class 1 denotes Left
Eyes and class 2 denotes Right Eye.

Figure 8. (a) Example of good convergence on class 1. (b) Example
of good convergence on class 2.

Figure 9. (a) Example of bad convergence on class 2 due to poor

initialization. (b) Example of bad convergence over class 1 due to
poor initialization.

6. CONCLUSIONS
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We have shown application of vanilla Active Shape
Models(ASM)[2] for eye-shape analysis to determine left vs
right eye/iris, the initial preliminary results reported are
encouraging ~65% but still require significant more work to
achieve high-identification accuracy. The biggest challenge
is initialization which greatly affects the fitting performance.
When we tested the vanilla ASM model on classifying left vs
right eye shapes, we see that manually giving correct
initialization of the ASM model lead to 100% correct
classification on a subset of the images. Thus model shape
parameters contain the discriminative power for high
identification accuracy however that depends on the
initialization parameters and the search space capabilities of
the ASM to perform a good fit on the eye shape. Using
correlation methods, when tested on centered and rotated eye
shapes of constant scale also we get better than 89% correct
classification so that helped the fitting process by using
local correlation to enhance the shape fitting process of the
ASM. Our initial results are promising, leaving great room
for improvement. Future work will focus in building more
robust ASM search space & fitting to improve the resulting
model accuracy, as doing so will definitely improve the
identification performance accuracy since we have shown
that the manually initialized shapes had the discrimination
power using SVMs for successful identification of left/right
irises on the subset.
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