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ABSTRACT

Measurement and evaluation of biometric device performance
is critical to end users and consumers of these devices. In this
paper we present explicit theoretical correlation models when
the biometric matching process is stationary that can be used
to derive variance estimates of biometric performance met-
rics. We focus in this paper on the failure to enroll, the failure
to acquire, the false match rate and the false non-match rate.
We further present unified notation that makes our correlation
frameworks possible.

Index Terms— Statistics, Covariance matrices, Image
Classification, Moment methods, Random Variables

1. INTRODUCTION AND NOTATION

An understanding of how a biometric device performs is es-
sential for decisions regarding Many methods for carrying
out an evaluation of a biometric identification have been pro-
posed. All of these evaluations utilize general statistical meth-
ods and, in particular, statistical methods that estimate vari-
ances. The evaluation of the performance of a biometric de-
vice is a critical tool for users and decision makers. This work
builds on previous attempts to describe the biometric process
mathematically by Mansfield and Wayman [1] and Ma et al
[2]. We extend those works to give explicit (and appropriate)
correlation structures that allow for the calculation of variance
estimates of the typical biometrics performance metrics.
The biometric matching process can be thought of in the

following steps with accompanying notation:

1. Enrollment, (Ei)

2. Acquisition, (Aij)

3. Feature Extraction, (Sik,Xik)
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4. Matching, (Yik,i′k′ )

5. Decision, (Dik,i′k′).

(We will assume here a 1 − 1 matching process but it is
straightforward to generalize the work here to 1 − n match-
ing.) The first step in this process is the enrollment of indi-
viduals. As part of the enrollment we measure whether or
not the ith individual is capable of enrolling. We call this
binary random variable Ei for i ∈ E where E is the set of all
individuals who attempt to enroll and nE is the number of
individuals who attempted to enroll.

Ei =

{
1 if individual i is unable to enroll
0 otherwise. (1)

Then the failure to enroll (FTE) rate is

FTE =

∑
i∈E Ei

nE

. (2)

It is certainly the case that additional measurements are col-
lected, e.g. biometric samples and templates, as part of the
enrollment process. We will discuss these below as part of
the matching process.
The second step in the process is the acquisition of images

in non-enrollment attempts. Since it is possible for multiple
acquisition attempts to occur per individual, we use Aij to
denote the jth binary outcome of the acquisition attempt by
the ith individual where i ∈ A and j = 1, . . . , ai. We will
assume Aij is an indicator of failure to acquire. Then

Aij =

⎧⎨
⎩

1 if the jth acquisition attempt by
individual i is not acquired

0 otherwise.
(3)

Thus, ai is the total number of attempts for the ith individual
and A represents all individuals who attempt to have their
biometric image collected. Then the failure to acquire (FTA)
rate is

FTA =

∑
i∈A

∑ai

j=1
Aij∑

i∈A ai

(4)

We are not assuming thatA = E .
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We next move to the biometric sample that is collected.
We will denote biometric samples by Sik where we are only
interested in samples taken when Aik = 0. From each sam-
ple, Sik, image processing is done and features are extracted.
Since it is nearly always the case that multiple features are
extracted we denote the features that are extracted on the kth

successful acquisition for the ith individual by Xik. Having
extracted these features, biometric systems then compare fea-
tures extracted to those taken during the enrollment process.
This matching process yields a match score for each pair of
images. Thus, we need to denote these scores by Yik,i′k′

which is the match score for a comparison of the kth image
collected on the ith individual to the k′th collected image for
the i′th individual. This notation allows for consideration of
both genuine (i = i′) and imposter (i �= i′) match scores with
a single notation. The imposter and genuine score distribu-
tions are build by combining these comparison scores when
i �= i′ and when i = i′ respectively.
The final step of the matching process is the decision

whether to accept or reject an individual based upon their
presented biometric. Without loss of generality we can say
that we will reject a given decision if Yik,i′k′ is above some
threshold, τ . We letDii′� be a binary decision based upon the
match score Yik,i′k′ . Dii′� will be a binary decision for the
�th decision from comparing images from individual i and i′.
We use this notation since it is more general and simpler than
the notation for the match scores. Note that the Dii′� will be
1 if a mistake is made in matching and 0 otherwise. More
formally let

Dii′� =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = i′, Yik,ik′ > τ

0 if i = i′, Yik,ik′ ≤ τ

0 if i �= i′, Yik,i′k′ > τ

1 if i �= i′, Yik,i′k′ ≤ τ

(5)

The false match rate (FMR) and the false non-match rate
(FNMR) are then

FMR =

∑
i

∑
i′ �=i

∑
� Dii′�∑

i

∑
i′ �=i nii′

(6)

and
FNMR =

∑
i

∑
� Dii�∑

i nii

, (7)

respectively. In the above equations, nii′ represents the num-
ber of comparisons made between individuals i and i′ and nii

is the number of comparisons made between individual i and
themselves. If i = i′ then the comparisons are genuine and if
i �= i′ then the comparisons are imposter.

2. STATISTICAL BACKGROUND

All of the statistical methods used to evaluate classification
and matching performance - FTE, FTA, FMR, FNMR - are
all averages and, therefore, they are linear combinations. We

simply note here that a proportion is an average of 0’s and 1’s.
Clearly then FTE, FTA, FMR and FNMR are averages. Any
discussion or estimation of these quantities utilizes statistical
methods for linear combinations. Letting Rv, v = 1, . . . , V

be a random variable and let av’s be known constants. Then
R� =

∑V

v=1
avRV is our linear combination of interest. Note

that if av = V −1 then R� is an average. We note that the first
two moments of R� are

E[R�] =

V∑
v=1

avE[Rv] (8)

and

V [R�] =

V∑
v=1

V∑
w=1

avawCov(Rv , Rw)

=

V∑
v=1

a2

vV [Rv]

+ 2

V∑
v=1

V∑
w>v

avawCov(Rv, Rw) (9)

Here we have used the standard notation that E[ ], V [ ],
Cov( , ) represent the expectation, variance and covariance,
respectively.
If we can assume that the process mean is constant, i.e.

E[Rv] = μR, then Equation 8 becomes

E[R�] = μR

(
V∑

v=1

av

)
. (10)

If we can further assume that the variances for the process
described by the random variables are equal - V [Rv] = σ2

R

then we can rewrite Equation 9 as

V∑
v=1

a2

vσ2

R + 2
V∑

v=1

V∑
w>v

avawσ2

RCorr(Rv , Rw). (11)

Here we denote Corr(, ) as the correlation of two random
variables. Note that the assumption of constant mean and
variance is often referred to as wide-sense stationarity (WSS)
or covariance stationarity. One concern that is raised about
the assumption of WSS for biometric classification is the is-
sue of the biometricmenagerie or biometric zoo first proposed
by Doddington et al [3]. There has been much work in recent
years on the issue of a biometric menagerie and whether or
not it truly exists. For example, see [4], [5], [6], or [7] for
recent works in this area. Setting aside the issue of the exis-
tence of the menagerie, it is possible to maintain a biometric
process whose mean and variance are constant but whose cor-
relation structure can accommodate the menagerie. We will
present such structures below.
We motivated the above derivations by pointing out the

need for understanding variances of linear combinations.
There are two other important reasons for focusing on the
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correlation and the covariance structure. The first of these
is the need to consider asymptotic behavior of random vari-
ables and their linear combinations. We note that central limit
theorems are most often associated with averages; however,
central limit theory is more generally applicable to linear
combinations. See, for example, Jacod and Shiryaev [8],
for additional results in this area. The second reason for the
importance of the correlation structure is the need for appro-
priate resampling methods. Several resampling methods have
been proposed in the biometrics literature including Bolle et
al [9] and Poh et al [10].

3. BIOMETRIC CORRELATION STRUCTURES

In this section we present correlations for the performance
metrics of FTE, FTA, FMR and FNMR. As mentioned in the
previous section, understanding of correlation is crucial to un-
derstanding of variability estimates and, hence, statistical in-
ference. Many of the commonly used statistical tools - sam-
ple size calculations, confidence intervals, generalized linear
models - that are potentially available to biometrics require
the ability to articulate the variance structure of a linear com-
binations. It is important to remember here that these correla-
tion structures depend on WSS being constant for the process
under consideration. In addition, we note that the correlations
here yield variability beyond that already due to independent
events. We begin here with the correlation for FTE. This cor-
relation structure is straightforward since only individuals are
involved.

3.1. FTE Correlation

Above we introduced the notation for FTE’s. Since a single
individual is involved in each enrollment attempt and for each
individual there is only a single enrollment decision, we can
assume that there is no correlation between enrollment deci-
sions. Formally this is

Corr(Ei, Ei′) =

{
1 if i = i′

0 otherwise. (12)

The implications from this correlation structure is that the ob-
served enrollment decisions are uncorrelated and, thus, we
can use methods based upon independence for appropriate in-
ference.

3.2. FTA Correlation

The correlation structure for FTA is necessarily more compli-
cated since multiple attempts are possible for each individual.
We will assume here that acquisition attempts will be corre-
lated if they involve the same individual. If different individu-
als are involved then we assume that acquisition attempts are

uncorrelated. Mathematically, we write.

Corr(Aij , Ai′j′ ) =

⎧⎨
⎩

1 if i = i′, j = j′

ψ if i = i′, j �= j′

0 otherwise.
(13)

In this case ψ measures the degree of similarity that exists be-
tween acquisition decisions of the same individual. It is often
referred to as the intra-individual or intra-class correlation.

3.3. FNMR Correlation

FNMR has a structure that is similar to FTA because only a
single individual is involved though there are potentially nu-
merous decisions based upon that individual. The correla-
tion structure we propose explicitly here has been formulated
implicitly by at least two authors Poh et al [10] – the user-
specific bootstrap – and Schuckers [11] – the beta-binomial
approach. The correlation structure for the false non-match
decisions, theDii�’s, is

Corr(Dii� , Di′i′�′) =

⎧⎨
⎩

1 if i = i′, � = �′

ρ if i = i′, � �= �′

0 otherwise

(14)

For this correlation, ρ is a measure of how similar each indi-
vidual is to themselves.

3.4. FMR Correlation

False match rate correlation is necessarily the most compli-
cated because each decision involves two individuals and thus
the correlation depends on four individuals. Notationally we
try to group possible correlations. Below η represents the cor-
relation between two comparisons made on the same pair of
individuals. The ω’s represent the case where one individ-
ual from each pair is shared and the ξ’s represent the correla-
tion between individuals when the order is asymmetric. If the
matcher is symmetric then this model will simplify to simply
η and the ω’s. The degree to which someone is a goat or sheep
is measured by the ω’s. The the correlation structure for the
imposter decisions, theDii′�’s where i �= i′ is given by

Corr(Dii′�, Dkk′�′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = k, i′ = k′, � = �′

η if i = k, i′ = k′, � �= �′

ω1 if i = k, i′ �= k′

ω2 if i′ = k′, i �= k

ω3 if i = k′, i �= k

ω3 if i′ = k, i �= k′

ξ1 if i = k′, i′ = k, � = �′

ξ2 if i = k′, i′ = k, � �= �′

0 otherwise
(15)

The correlation described above is a complex and sophisti-
cated one. A similar sort of correlation structure was first
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proposed by Bickel [12]. Our correlation structure general-
izes Bickel’s approach. It also important to note that resam-
pling or nonparametric methods currently in use are not suf-
ficient to accurately assess the variability in the FMR based
upon this .

4. DISCUSSION

An understanding of correlation structure is necessary for ap-
propriate use of statistical methods. The evaluation of bio-
metric identification performance depends on these statistical
methods. This paper has proposed explicit correlation struc-
tures to further statistical research on biometric device perfor-
mance. The metrics for which we have proposed a correlation
structure ar e the failure to enroll, the failure to acquire, the
false match rate and the false non-match rate. The correla-
tion structures here are dependent upon each process having
constant mean and variance. Changes in the process can be
modelled by a generalization of the methods considered here.
It is hoped that the correlation frameworks described here will
lead to the development of improved statistical methods now
that these correlations have been implicitly described. In par-
ticular, the use of statistical theory for linear combinations
should lead to the development of appropriate variance esti-
mates of biometric performance metrics. Finally we note that
these correlations allow for the possibility of the biometrics
menagerie.
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