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ABSTRACT
We propose a complementary approach to the design of neural
prosthetic interfaces that goes beyond the standard approach
of estimating desired control signals from neural activity. We
exploit the fact that the for a user’s intended application, the
dynamics of the prosthetic in fact impact subsequent desired
control inputs. We illustrate that changing the dynamic re-
sponse of a prosthetic device can make specific tasks signif-
icantly easier to accomplish. Our approach relies upon prin-
ciples from stochastic control and feedback information the-
ory, and we illustrate its effectiveness both theoretically and
experimentally - in terms of spelling words from a menu of
characters using binary surface electromyography classifica-
tion.

Index Terms— neural prosthetics, feedback information
theory, stochastic control, interface design

1. INTRODUCTION

Neural interfaces use estimates of brain or muscle activity to
generate control inputs for a prosthetic device. Many differ-
ent sensors are now available to measure neural activity, both
invasive (such as intracortical devices that observe ensemble
spiking of individual neurons) and non-invasive (such as elec-
troencephalography and electromyography). These sensors
have been used to control a growing number of prosthetic de-
vices that include computer cursors, cell phones, robotic ma-
nipulators, and wheelchairs. Applications include both restor-
ing lost function (for example, with a neuroprosthetic limb)
and enhancing or augmenting normal function (for example,
with subvocal speech in noisy environments).

One significant challenge in the design of neural inter-
faces is the fundamental uncertainty about user intent. In par-
ticular, the only way that the user can communicate their in-
tent to the prosthetic is through sensed neural activity, which
is typically very noisy. As a consequence, most previous work
has focused on improving the measurement and estimation of
neural activity.
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Here we take a complementary approach, focusing on
adaptively providing sensory feedback to query the user in
order to generate better control inputs. We view a neural
interface as a dynamic system connecting a user with a pros-
thetic, described using the framework of stochastic control
(Section 3). The policy we develop has roots in feedback
information theory. We model user behavior in the context of
specific tasks, and change the actuation policy of the interface
to make it easier for the user to accomplish these tasks. The
example we provide here is not particularly profound. How-
ever, our plan here is to motivate the use of this new degree of
freedom by showing in some simple settings how significant
performance enhancement can ensue. Specifically, we show
here that system performance can be improved by a control
policy that takes advantage of how user intent itself depends
on the state of the prosthetic (Section 4). This dependence ef-
fectively allows the interface to have more information about
intent than from measurement of neural activity alone.

Fig. 1. A screenshot of the text interface.

We demonstrate our approach in initial experiments with
a text interface (Section 5), shown in Figure 1. The neural
sensor is a surface electromyography device, trained to rec-
ognize sub-vocal expression of the words “left” and “right.”
The prosthetic is a 1-D cursor, used to select characters from
a menu of fixed length. The menu consists of the 26 letters
of the English alphabet and a space character (displayed as
an underscore), equally spaced along a line. The cursor is
placed on this line, its position updated in response to neural
activity. The task is to spell a sequence of words as quickly
and accurately as possible. Results are presented for one fe-
male human subject. These results demonstrate that, even
without enhancing the measurement of neural activity, the
performance of a neural interface can be significantly im-
proved. Although this observation - in terms of our exam-
ple - may be trivial to some, it does not appear to have been
readily exploited in the design of neural prostheses. Here
we illustrate this simple observation to draw attention to the
paradigm; we are currently investigating non-trivial exten-
sions, such as incorporating this dynamic querying into the
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neural control of continuous-movement prostheses. We also
note that these results can clearly be improved by exploiting
the statistical structure of language, similar to the “Dasher”
system [1]. Such a technique can naturally be tied into our
approach in a complementary fashion; indeed, our research
group has begun to exploit the structure of language to en-
hance performance of P300 communication prostheses [2] us-
ing stochastic control.

2. BACKGROUND

2.1. Neural interfaces
Neural interfaces use measurements of neural signals to con-
trol computers or machines. In general, these interfaces are
classified by whether they use invasive (intracortical sensors)
methods [3, 4] or non-invasive (electroencephalograph, EEG,
and the electromyograph, EMG) methods [5, 6, 7] to extract
measurements.

2.2. Communication using surface electromyography

The interface we focus on in this paper uses surface-EMG to
capture subvocalization or “silent speech.” Subvocal speech
recognition uses analysis of muscle activity in the tongue and
throat to determine what someone is trying to say, even if it
is not possible for the speaker to produce sounds. A lot of
work has been done to improve signal processing and speech
recognition for surface-EMG [7]. Some of this work has be-
gun to integrate small, portable EMG sensors with prosthetic
devices [8]. Our work focuses instead on improving perfor-
mance by changing the dynamic response of the prosthetic
device, rather than by enhancing the recognition of words.

2.3. Text interfaces
In this paper we enable neural control of a text interface, a
common application of surface-EMG sensors. However, un-
like most other work with surface-EMG, we do not try to
identify a large vocabulary of spoken words or letters. In-
stead, we only allow the user to give a binary input, by saying
either “left” or “right.” This binary signal moves a 1-D cursor
through a menu of characters. We take this approach because
we want to show what is possible even with a limited neural
signal. In this respect our text interface is more strongly re-
lated to those that use EEG sensors. For example, the P300
spelling paradigm measures event-related potentials, charac-
teristic responses to stimuli that can be interpreted as binary
(on/off) signals [9]. It randomly illuminates on-screen char-
acters and selects the one that elicits the strongest response.
The performance of this type of interface (in this case mea-
sured by the number of words per minute) is strongly affected
by the size, shape, and arrangement of the on-screen menu,
which can be designed based on the statistical structure of
language [10, 1]. Our work is similar, but focuses on chang-
ing how a 1-D cursor moves through a menu of fixed size and
shape.

2.4. Solution approach

We model a neural interface as a discrete-time dynamic sys-
tem and focus on optimizing the dynamic response of this
system using a stochastic control framework [11]. Our goal
in this paper is to choose the response of a 1-D cursor to neu-
ral activity in a way that minimizes the number of binary sig-
nals needed to select a single character from a fixed menu. In

Section 4 we will see that this boils down to estimating which
character the user wants to select based on their behavior over
time.

The technique we used to address our problem, proba-
bilistic bisection, has roots in the field of information theory.
It was originally suggested [12, 13] as a way to perform com-
munication across a binary symmetric channel with noiseless
feedback. These works have subsequently been generalized
[14] to indicate how feedback coding strategies should be de-
veloped for arbitrary noisy channels: sensory feedback should
provide information about the posterior distribution on user
intent (that is, the interface’s belief about user intent), and
measured neural activity should be interpreted as steering
this distribution. Communication across noisy channels with
noiseless feedback has become a fundamental component to
reasoning about “control over noisy channels”, an active area
of research that unifies information theory and control the-
ory. More recently this strategy has been applied to machine
learning, specifically to the technique of active learning (also
known as adaptive sampling) [15].

3. FRAMEWORK

In this paper we model a neural interface as a discrete-time
dynamic system connecting a user with a prosthetic (Fig. 2).
At each time step k, six variables describe the state of this
system:

θ user intent

xk desired control input to the prosthetic

yk measurement of neural activity

uk actual control input to the prosthetic

pk state of the prosthetic

fk sensory feedback.

User Prosthetic
yk

fk

sensory feedback

measurement of neural activity

Fig. 2. A neural interface is an interconnection between two

dynamic systems.

For example, if the prosthetic is a robotic manipulator,
then we might define θ as the intended trajectory, xk as a set
of desired joint angles, yk as neural spiking in a region of
motor cortex, uk as a set of joint torques, pk as the actual
angle and angular velocity of each joint, and fk as the posi-
tion of the end-effector. To be concise, we in general denote

zk � (z0, . . . zk) These six variables evolve according to four
generative statistical models

behavior xk+1 ∼ P (xk+1|xk, fk, θ)
observation yk ∼ P (yk|xk)

actuation pk+1 ∼ P (pk+1|pk, uk)
feedback fk ∼ P (fk|pk)

and one time-varying deterministic function

policy uk = μk(yk, pk, uk−1, fk−1).

Notice that both user intent and the desired control input
can only be observed indirectly, through the noisy measure-
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ment yk. We assume that this measurement depends neither
on the state of the prosthetic nor on any previous intent xk−1.
We abbreviate by

Ik = (yk, pk, uk−1, fk−1)

the vector of all information available when selecting a con-
trol input uk, where I0 = (y0, p0). In this paper, we will as-
sume that models of behavior, observation, and actuation are
given. For simplicity, we will also assume that feedback is
full-state and error-free, so fk = pk. Then, we will be inter-
ested in choosing a policy π = {μ0(I0), . . . , μN−1(IN−1)}
that optimizes some performance metric, for example a mini-
max cost of the form

Jπ = max
θ,x0,p0

E {g (xN , pN )} .

We will show that performance can be improved by a policy
that takes advantage of how the user’s desired control input
depends on the state of the prosthetic. In particular, we will
use this dependence to better estimate the underlying user in-
tent θ.

4. APPLICATION TO THE TEXT INTERFACE
Consider the problem of selecting a single letter from a menu,
using the text interface described in Section 1. The prosthetic
is a 1-D cursor that highlights letters in the menu. The neu-
ral sensor is a surface-EMG device, trained to recognize sub-
vocal expression of the words left and right. Whenever the
surface-EMG device detects a word, the cursor moves in re-
sponse; otherwise, it remains motionless. If the cursor high-
lights the same letter for a significant length of time, that letter
is selected, and the process repeats.

We model this problem using our framework from Sec-
tion 3. Assume the menu of letters has length n. We refer
to each letter by its position and describe the menu by the
ordered set M = (1, . . . , n). We refer to the words left and
right by the integers −1 and +1, respectively. The state of the
prosthetic is the current position pk ∈ M of the cursor. The
control input is the amount uk ∈ Z that the cursor moves at
each time step k, where we require that pk + uk ∈ M . The
measurement is a word yk ∈ {−1, +1}. The feedback is the
entire state fk = pk. The user’s desired control signal is the
movement direction xk ∈ {−1, +1}. Finally, the user’s un-
derlying intent is a letter θ ∈ M , which we assume remains
fixed until it is selected.

We assume that these variables evolve according to the
following four models:

behavior xk+1 =
{

sign (θ − fk) w/probability 1 − α
− sign (θ − fk) w/probability α

observation yk =
{

xk w/probability 1 − β
−xk w/probability β

actuation pk+1 = pk + uk

feedback fk = pk

The model of behavior says that the user always wants to
move the cursor toward the desired letter, but has some
chance 0 ≤ α < 1/2 of making a mistake. The model of
observation says that our measurement of the desired move-
ment direction also has some chance 0 ≤ β < 1/2 of being
wrong. The model of actuation says that the cursor moves
exactly the distance specified by the interface. The model
of feedback says that the user perfectly observes the current
position of the cursor.

Our goal is to select a policy

π = {μ0(I0), . . . , μN−1(IN−1)}
for computing uk = μk(Ik) at each time step k that mini-
mizes the cost

Jπ = max
θ,p0∈M

E {|θ − pN |} .

over a finite horizon N . In other words, our goal is to bound
the worst-case expected error in cursor position, regardless
of the desired letter. In particular, we will be interested in
the rate at which this bound decreases with N , for a given
policy π.

Here we have chosen a minimax cost primarily because it
allows us to give performance guarantees. Other costs (such
as min-time, sum-squared error, or error probability) lead to
similar results in practice. If we do not take into account how
intent depends on the state of the prosthetic, we can do no
better on average than moving one step in the direction of yk
after every measurement, as in

policy π uk = yk.

So at each time step k, the cursor will move in the wrong
direction (away from θ) with probability γ = (1 − α)β +
α(1 − β) and the expected distance moved toward the target
after k steps is at least k(1 − 2γ). So we have

Jπ ≤ (n − 1) − N(1 − 2γ)

for all N < n − 1, and the cost of this policy decreases lin-
early with N .

If we instead take advantage of this dependence, we can
achieve better performance. In particular, assume that our
estimate of θ begins uniformly distributed in the ordered
set M = (l0, . . . , r0) where we define l0 = 1 and r0 = n.
Assume that at time k − 1, our estimate of θ has some dis-
tribution P (θ|y0, . . . , yk−1) over the finite set M . Then after
measuring yk = +1, we can update this distribution with
Bayes’ rule to find

P (θ|yk) = η·
{

(1 − γ) · P (θ|yk−1), ∀θ ∈ (pk+1, . . . , n)
γ · P (θ|yk−1) ∀θ ∈ (1, . . . , pk)

The update for yk = −1 is analogous. We adopt a probabilis-
tic bisection policy, which we denote by π′, and choose the
input uk that places pk+1 at the median of the posterior dis-
tribution over θ, so uk satisfies both:

pk+uk−1∑
i=1

p(θ = i|yk) ≤ 1
2

and

n∑
i=pk+uk

p(θ = i|yk) >
1
2
.

Then we know from [13, 15, 14] that this policy has cost
bounded by

Jπ′ ≤ n2−cN

over a finite horizon N , for some constant c > 0. In other
words, the cost of this policy once again decreases exponen-
tially with N .

Note that one way to interpret this policy is from a feed-
back information-theory perspective: the user’s desired con-
trol input xk at each time k is independent of previous feed-
back signals y1, . . . , yk−1, so the query of the user is such
that his response is the most informative. This is not a co-
incidence, and is fundamental to developing good control
schemes in the presence of noisy communication channels
[16],[14, SecII]. This scheme can be extended for virtually
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Fig. 3. Number of commands required per character, com-

puted as a running average with a 50-character horizon. The

dotted line is the average over all 200 characters.

any neural interface pertaining to choices [14] over a finite
alphabet. It can be used even more generally for systems with
continuous dynamics - although it is not always guaranteed
to be the optimal solution to a stochastic control problem
(which in general suffers from the curse of dimensionality).
Nonetheless, its operation is intimately tied to recursive es-
timation - in that the optimal current query position can be
expressed as a function of the previous query position and the
most recent observation [14, Lemma 1] - and thus has com-
putational ease. We also espouse using this approach more
generally because of its information-theoretic performance
guarantees (i.e. error exponents).

5. RESULTS

5.1. Experimental setup

In the previous section we presented two control policies
(“fixed offset” and “probabilistic bisection”) for a 1-D menu-
based text interface. The first policy moves one step to the
left or right in response to neural activity; the second policy
moves a variable distance based on an estimate of the de-
sired character. These policies were evaluated in experiments
with one healthy 20-year old female volunteers with normal
vision.

5.1.1. Signal acquisition

In order to extract neural signals, we use a commercially
available, self-contained, single-channel surface-EMG sen-
sor designed to be worn around the neck (“The Audeo”).
This sensor amplifies, filters, digitizes and transmits the
EMG signal to a computer via a standard USB interface.
Software available with the device allows a user to train it
to recognize subvocal expression of the words “left” and
“right.” This sensor was originally designed to enable a
paralyzed patient to drive a motorized wheelchair. Ad-
ditional information regarding the device can be found at
http://www.theaudeo.com/tech.html.

5.1.2. Online tests

The subject was asked to write the same passage using
surface-EMG that they had written using keyboard input.
No additional noise was added to the neural signal. They
used the fixed-step policy first, then repeated the experiment
with the bisection policy. The length of time before letter
acceptance was increased to 4 seconds for both policies, in
order to capture the additional amount of time it takes to
generate a signal with surface-EMG as compared to keyboard
input.

5.2. Data and analysis

We measured subject performance as the number of charac-
ters selected per minute. Figure 3 shows a running average
over all trials with a 50-letter horizon, along with the num-
ber of neural commands given, again as a running average.
It shows that probabilistic bisection improved performance,
allowing significantly higher average throughput than fixed
offset (by an average of 112%). Figure 3 also shows that
there was also a significant difference between policies in the
effort the subject had to exert, measured as the number of
commands required to generate a character (by an average of
63%).

6. CONCLUSION
In this paper we considered the design of neural interfaces,
which use estimates of brain or muscle activity to generate
control inputs for a prosthetic device. We showed that chang-
ing the dynamic response of the prosthetic can make specific
tasks easier to accomplish, even without improving the mea-
surement of neural activity. We verified our results in exper-
iments with a text interface, where neural activity was mea-
sured using surface electromyography and the prosthetic was
a 1-D cursor used to spell words from a menu of characters.
We are currently extending our approach to a wider array of
neural sensors and prosthetic devices, in particular devices
with more complex dynamics.
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