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ABSTRACT

We compute the capacity of neural prostheses using a vector

Poisson process model for the neural population channel. For

single-electrode stimulation prostheses, the capacity is pro-

portional to the size of the population being stimulated, the

same value that results when each neuron is stimulated indi-

vidually. In contrast, when gross recordings are used in con-

trol prostheses, the capacity is much less than it is when each

neuron’s output is treated separately. Consequently, spike

sorting, whereby gross recordings are sorted into their con-

stituent spike trains, is crucial to the performance of neural

control devices. By computing the capacity of the neural pop-

ulation channel with spike sorting, we find that false positives

cause a far greater reduction in capacity than either missed

spikes or mislabeled spikes. Thus, a good spike sorting algo-

rithm for neural prostheses should be biased against commit-

ting false positives, even at the expense of altering the spike

train statistics.

Index Terms— Neural prosthetics, information capacity,

spike sorting, neural populations.

1. INTRODUCTION

Advanced techniques for electrode implantation, neural

recording, and signal processing have enabled a suite of new

applications for neural prostheses and brain-machine inter-

faces. These devices generally fall into two categories. Stim-

ulation devices consist of an electrode (or electrodes) excit-

ing a population of neurons. This category includes sensory

prostheses such as cochlear implants and bionic eyes, and im-

plantable stimulators used to treat a variety of conditions such

as Parkinson’s and clinical depression. Control devices rely

on extracellular recordings from multiple neurons to control

a mechanical device, and include motor prostheses such as

bionic limbs, and brain-computer interfaces that have restored

communication to some patients with neurodegenerative dis-

eases [1].

Currently, no general consensus has emerged as to the

“best” approach to designing neural prostheses, with re-

searchers devising a variety of novel techniques with varying
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degrees of success. However, though many existing prosthe-

ses may perform qualitatively well, evaluating their perfor-

mance objectively requires knowledge of the ultimate perfor-

mance benchmark. In other words, we need to know how well

the operational system works compared to the optimal ideal,

given constraints such as current stimulation limits, number of

electrodes, and spike-sorting reliability. From an information

theoretic viewpoint, how well neural prostheses perform de-

pends on, in the stimulation case, how effectively information

from the stimulator can be conveyed through a gross excita-

tion of a population, and in the control case, how accurately

the interface can extract information from multi-unit record-

ings. In both cases, this capability is determined by the sys-

tem’s information capacity.

Previously, we derived the capacity for a population of

neurons modeled as a vector Poisson process, and applied

those results to study neural prostheses of both types [2, 3].

That analysis showed that when using only a single input to

stimulate an entire neural population (for example, with a sin-

gle implanted electrode), the best achievable performance is

theoretically the same as that resulting from stimulating each

neuron separately. In contrast, for neural control devices, hav-

ing access to the neurons’ individual outputs is crucial. If the

control device has access only to the superposition of multi-

ple neural responses, the capacity is greatly reduced. Con-

sequently, separating gross recordings into their constituent

spike trains, a process commonly known as spike sorting, is

an important first step to achieving good performance. Sort-

ing errors reduce capacity from the ideal, though different

types of errors mislabeling, missing spikes, and inserting

spikes may have different effects on the system. Here, we

extend our previous results to show how sorting errors alter

the capacity of the neural control channel.

2. THE CAPACITY OF NEURAL PROSTHESES

We model a neuron (or population of neurons) as a point pro-

cess communication channel. The channel produces a se-

quence of events Nt that encodes an input signal Xt according

to an intensity μ(t;Ht), which represents how the instanta-

neous event rate depends on the input Xt and on the process’s

history Ht. Assuming a stationary input, the capacity of this
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Fig. 1. Several configurations of parallel channels for vector and common input cases are shown.

channel is the maximum time-averaged mutual information

between Xt and Nt. The maximization is with respect to all

input probability distributions that yield a class of intensities

reflecting the channel characteristics. Here we consider only

constraints on the maximal intensity, though other constraints

could be incorporated as well [2].

Kabanov [4] derived the capacity of the single point

process channel when the intensity is constrained as

0 ≤ μ(t;Ht) ≤ λmax:

C(1) =
λmax

e ln 2
bits/s.

We use the notation C(1) to denote the capacity of a single

neuron. Kabanov’s derivation showed that the capacity of any

point process satisfying the same intensity constraint cannot

exceed the Poisson process’s capacity.

We extended this result to find the capacity of a popula-

tion of neurons. The simplest channel to analyze is the one

shown in Figure 1a. In this model, each neuron in a popula-

tion of size M has both independent inputs and independent

outputs. Simple manipulations using the properties of mutual

information show that the total capacity of this population

equals the sum of the individual capacities. Thus, in a ho-

mogeneous population, C(M) = MC(1). When the popula-

tion has connection-induced dependencies that model lateral

connections among neurons, the capacity actually increases

by a quantity that is a function of the amount of dependence

present in the population [2].

Figure 1b models single-electrode neural stimulation,

wherein all M neurons respond to a common stimulation sig-

nal. Surprisingly, when the neurons are conditionally inde-

pendent (no lateral connections), the capacity of this channel

is identical to the independent input case. Thus, if the proper

stimulating signal could be found, single-electrode stimula-

tion works as well as individual stimulation.

From a neural control perspective, these two cases repre-

sent the ideal in which the control device has direct access to

the spike trains produced by each neuron in the population.

In practice, however, it is usually infeasible or impossible to

record directly from individual neurons [5]. Figure 1c depicts

a more realistic scenario, in which the aggregated activity of

an entire population of neurons is recorded as a single out-

put signal, Y =
∑

m
Ym. This situation models single elec-

trode extracellular recordings, as well as EEGs and local field

potentials arising from the concurrent activity of large num-

bers of neurons. Calculations show that when the neurons are

conditionally independent, C(M) ≤ 1.577C(1), regardless of

population size. Consequently, not separating an aggregate

recording into its constituents drastically reduces the infor-

mation that can be gleaned.

A common technique to improve the effectiveness of neu-

ral control devices is to record from multiple sites simultane-

ously, using a multielectrode array, for example. The corre-

sponding channel is depicted in Figure 1d. Here, L record-

ings are obtained, each from a different subpopulation of the

M total neurons. For simplicity, we consider aggregate out-

puts from L equal-sized, overlapping subpopulations. For

large populations with no connection-induced dependencies,

C(M) ≤ (2L − 1)1.577C(1), indicating that multiple aggre-

gated recordings can increase capacity. The upper bound is

achieved when the subpopulations overlap substantially. This

result breaks down when the factor (2L−1)1.577 approaches

M .

3. SPIKE SORTING

Although using multi-site recording can mitigate the negative

effect of response aggregation on the ultimate performance

of control prostheses, even in the optimal case the resulting

capacity is far less than that obtained when each neuron’s re-

sponse can be recorded separately. An alternative (or comple-

mentary) technique is to separate response signals from gross

recordings: spike sorting. A variety of spike sorting algo-

rithms have been devised using techniques such as template

matching, principal components analysis and various cluster-

ing algorithms, and each method suffers different detection

and classification error rates [6]. To determine the effect spike

sorting errors have on the optimal performance of a neural

control device, we investigate how different kinds of errors in

spike sorting affect the system’s capacity.

Unfortunately, finding the probability distribution for a
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Fig. 2. Spike sorting channels with different types of sorting errors are shown in the top panel. Labels represent the neural

response within a single time bin; for example, 0, 0 indicates neither neuron produced a spike. The bottom panel shows

the corresponding ratio of the capacity with spike sorting to the optimal capacity for both the common input (dashed) and

independent input (solid) cases. Capacity ratios are shown for ρ = 0 (blue), ρ = 0.4 (green), and ρ = 0.8 (red).

vector Poisson process with spike sorting errors is extremely

difficult, which prevents us from computing the capacity di-

rectly. Instead, we divide time into spike sorting analysis

bins and consider the analogous discrete-time process, the

Bernoulli process, for both the population and the spike sort-

ing channel. At each bin index n, the Bernoulli process Y (n)
equals either zero or one, independent of any other bin. For

the Bernoulli channel, the probability that the channel output

equals one at bin n is governed by the stochastic input X(n):

P [Y (n) | X(n)] =

{
X(n), Y (n) = 1,

1 − X(n), Y (n) = 0.

The input is constrained as 0 ≤ X(n) ≤ xmax, reflecting the

intensity constraint for the point process channel. We further

assume that the input is stationary and consists of statistically

independent values from bin to bin.

To extend this model to a population channel, we write the

vector Bernoulli distribution using the Sarmanov-Lancaster

expansion [7]. For simplicity, we consider only the case M =
2 here. The conditional joint distribution is

P (Y1, Y2|X) =P (Y1|X)P (Y2|X)

·

⎡
⎣1 + ρ

(Y1 − E[Y1|X ]) (Y2 − E[Y2|X ])√
σ2

Y1|X
σ2

Y2|X

⎤
⎦ ,

where ρ is the simple correlation coefficient between the pair

of Bernoulli random variables Y1 and Y2, which models the

connection-induced dependence between neurons. This con-

struction generalizes easily to M variables using higher order

correlation coefficients.

To consider the effect of spike sorting on the overall ca-

pacity of the system, we pass the vector Bernoulli process

modeling the population output through a spike sorting chan-

nel. Several options exist for studying the errors introduced

by the spike sorting channel, a few of which are depicted in

Figure 2 for the case M = 2. Since the output of the cascade

is also a vector Bernoulli process, we can find the capacity of

the combined channel using the same techniques we used for

finding population capacities. Though the discussion here is

limited to the M = 2 case, we did investigate the effects for

larger populations, and the results are qualitatively similar.

In Figure 2a, the spike sorter commits only errors in la-

beling single spikes; that is, with probability α, a spike from

neuron 1 is mistakenly said to have come from neuron 2, and

vice versa. The lower panel in Figure 2a shows the ratio of

the channel’s capacity to the capacity of the population chan-

nel when each response signal is completely known. When

the neural population has a single common input, labeling

errors have no effect and the capacity ratio is always 1. In

contrast, when the population is separately stimulated, the ca-

pacity ratio decreases to a worst-case value of around 0.6.
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Connection-induced dependence has almost no effect on the

capacity in this case.

In the second spike sorting channel, depicted in Figure 2b,

simultaneously occurring spikes are incorrectly labeled as be-

ing a single event produced by either neuron with probability

β, and both spikes are missed entirely with probability 1−2β.

The correct two-spike event is never detected in this model.

In the common input case, the capacity reduction is linearly

proportional to the error rate and the correlation ρ between

neurons. In the separate input case, β has almost no effect on

the capacity.

Finally, in the channel depicted in Figure 2c, all spikes are

correctly detected and sorted, but false positives (extra spikes)

are reported and assigned to each neuron with probability γ.

Here, the behavior for the common input and separate input

case are similar. In both cases, false positives substantially

reduce the channel capacity, dropping it to just 10% of its

original value in the worst case. Moreover, the capacity ra-

tio drops sharply with γ, approaching its lowest value when

γ = 0.2. Interestingly, connection-induced dependence be-

tween neurons actually mitigates the effect of false positives;

for example, when ρ = 0.5, the worst case capacity ratio in-

creases to around 0.4.

4. CONCLUSION

The capacity defines the ultimate fidelity limits of informa-

tion transmission by any system [2]. Computing the capacity

of the simple population structures revealed that neural stimu-

lation devices are not fundamentally constrained by the stimu-

lation technique; electrically stimulating an entire population

of neurons with a single electrode can, theoretically, achieve

the same performance as an array of electrodes that stimulates

each individual neuron separately. In contrast, we found that

neural control devices can suffer severe performance degrada-

tion when only gross recordings are used, and multi-electrode

recording can only mitigate this effect to a limited extent. In

other words, spike sorting is essential to the successful use of

neural control devices.

Our capacity analysis of spike sorting channels revealed

that the success of spike sorting for neural control depends

heavily on the type and frequency of errors that are com-

mitted. Most crucial to this performance are false positives,

which severely degrade the capacity, even when the error rate

is small. Missing spikes also degrades the capacity, but the

effect is only linearly proportional to the error rate, and the

reduction is only severe when the connection-induced depen-

dence is high. Finally, mislabeling spikes only decreases ca-

pacity in the independent input case, whereas in the common

input case mislabeling causes no loss in capacity. Though

we analyzed the effects of different sorting errors separately

here, the channels in Figure 2 can be combined. For example,

a recent paper [8] reported average spike sorting error rates of

23% false positive and 30% false negative. In that case, the

capacity can be less than 20% of its optimal value not sig-

nificantly better than that obtained by a single unsorted gross

recording.

It is important to note that maximizing capacity for the

spike sorting channel does not necessarily preserve the statis-

tics of the original spike trains. This non-intuitive result sug-

gests that different strategies should be employed for spike

sorting during experimentation versus spike sorting for pros-

theses. While accurate spike train reconstruction is impor-

tant for experimental analysis, for neural control applications

spike sorting should be intentionally biased in order to reduce

the rate of false positives, thereby increasing the capacity and

improving the device’s best-case performance.
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