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ABSTRACT

Electrophysiological recordings of brain activity include 
point process spike trains as well as continuous valued 
signals such as electroencephalograms (EEG), 
electrocorticograms (ECoG), and local field potentials 
(LFP).  The brain represents information about the outside 
world in neural spiking activity, which is reflected in each 
of these signal modalities.  An important problem in 
neuroscience data analysis involves estimating dynamic 
biological and behavioral signals from neural recordings.  
Here, we develop an adaptive filtering paradigm for 
estimating dynamic state processes from mixed observation 
processes that contain both point process and continuous 
valued observations.  In our analysis of these filtering 
algorithms, we draw analogies to well-studied linear 
estimation algorithms such as the Kalman and Extended 
Kalman filters.  We demonstrate the application of this 
mixed filtering paradigm to the problem of estimating a 
reaching movement trajectory from simulated 
simultaneously recorded motor cortical spiking and LFP 
activity.  We demonstrate that the mixed filter is better able 
to capture information about the movement trajectory than 
are filters based on the spiking activity or LFPs alone. 

Index Terms— Adaptive Filters, Kalman Filtering, 
Point Processes, Neural Coding, Brain-Computer Interface

1. INTRODUCTION 

Neural systems represent information about the outside 
world through the coordinated spiking activity of their 
constituent neurons [1].  Neurophysiologists studying the 
brain are able to record multiple classes of signals that 
reflect the neural representations associated with single 
neurons or entire brain regions.  On one end of the 
spectrum, spiking activity from individual neurons or small 
ensembles of neurons is recorded.  These signals are most 
appropriately modeled as point processes, since neural 
spikes are stereotyped electrical events that are localized in 
time [2].  In contrast, electroencephalograms (EEG), 
electrocorticograms (ECoG), and local field potentials 
(LFP) provide continuous valued signals that represent the 

integrated information from large populations of neurons 
[3]. 

We have previously developed adaptive filtering 
algorithms that are appropriate for point process neural 
spiking observations [4-7].  These algorithms have been 
successfully applied to multiple neural data analysis 
problems, including: estimating the trajectory of a free 
foraging rat from an ensemble of place cells from the CA1 
region of hippocampus [8], tracking receptive field 
plasticity of place-cells in both the CA1 region of 
hippocampus and deep entorhinal cortex [9,10], and 
reconstructing arm reaching movements from ensemble 
spiking activity in primate primary motor cortex [11].   

On the other hand, estimation problems exclusively 
involving continuous valued signals such as can be handled 
using standard techniques from adaptive estimation theory, 
such as the Kalman and Extended Kalman filters [12].  The 
problem of reconstructing reaching movements has been 
addressed using EEG [13] and LFP recordings [14]. 

However, if we wish to perform statistical inference 
using a combination of both continuous valued and point 
process observations, we need to expand the estimation 
framework developed previously. 

2. STOCHASTIC STATE MIXED PROCESS FILTER 

Although the neural spiking activity of a single neuron is 
more accurately described using point process models, other 
signals that can be observed in the brain, including the local 
field activity of ensembles of neurons around an electrode 
recording site, may be more appropriately modeled using 
continuous valued stochastic processes.  Estimation 
problems exclusively involving these continuous valued 
signals can be handled using standard techniques from 
adaptive estimation theory.  However, if we wish to perform 
statistical inference using a combination of both continuous 
valued and point process observations, we need to expand 
the estimation framework developed above. 

Let 1{ }K
k kx  be a stochastic state process with a state 

transition equation given by 
1k k k kx F x ,                               (1) 
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where kF  is a state transition matrix and ~ (0, )k kN Q  is a 
zero-mean Gaussian noise process with covariance matrix 

kQ , and let  

1: 1( )k k k k k ky C N x v                      (2) 
be an observation process where { }k  is a set of constants 
with known values, k  is a Gaussian white noise process 
with zero mean and 1: 1var( ) ( )k k kH N , and 1: 1( )k kC N  is 
a stochastic observation matrix that can change as a function 
of a set of point observations, 1: 1kN , generated from a point 
process with stochastic intensity function 

1: 1( | , , )k k k kt x y N .  This framework provides two sets of 
observations; one that takes on continuous values and one 
that takes on discrete values, both of which can be 
informative about the hidden state process.  Additionally, 
the continuous observation model is allowed to vary as a 
function of the spiking history and the conditional intensity 
of the spiking model is allowed to vary as a function of the 
current value of the continuous observation.  Therefore, this 
model framework allows for interactions between the two 
classes of observation processes.  The goal of a mixed 
observation filter is to optimally combine the information 
about the state vector from both of the observation 
processes at each point in time. 

Estimation of the state vector given these mixed 
observations once again involves tracking a probability 
distribution as it evolves in time and with each incoming 
observation.  This time, the appropriate distribution is the 
posterior probability of the state vector given the entire 
record of both sets of observations, 1: 1:( | , )k k kp x y N .  Using 
Bayes’ rule, we can express this distribution as a product of 
conditional observation distributions for the spiking process 
and the continuous-valued process, and a one-step state 
prediction distribution, as follows. 

0: 1 0: 1

0: 1 0: 1

0: 1 0: 1 0: 1 0: 1

( | , , , )
     Pr( | , , , )
           ( | , , ) ( | , )

k k k k k

k k k k k

k k k k k k k

p x y y N N
N x y y N

p y x y N p x y N
,    (3) 

where the one-step prediction distribution can be computed 
as a function of the state transition density and the posterior 
distribution obtained at the previous step of the recursion 
using the Chapman-Kolmogorov equation, 

0: 1 0: 1 1 1 0: 1 0: 1 1( | , ) ( | ) ( | , )k k k k k k k k kp x y N p x x p x y N dx .
Combining these and expanding the log of the posterior 
distribution in the left hand side of the equation in a Taylor 
expansion about the one-step prediction mean, in order to 
obtain a Gaussian approximation provides a recursive 
update algorithm for the mean and covariance of the 
posterior, now based on the combined set of point and 
continuous-valued observations.

Let | 1:[ | ]k k k kx E x N  and | 1:[ | ]k k k kW Cov x N .
These are the posterior state estimate and covariance, 

respectively.  Similarly, let | 1 1: 1[ | ]k k k kx E x N  and 

| 1 1: 1[ | ]k k k kW Cov x N .  These are the one-step prediction 
mean and one-step prediction covariance respectively. 

The posterior covariance and mean equations are then 
given by, 

| 1

1 1
| | 1
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and
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The posterior mean update equation (6) refines the one-
step mean using two separate correction factors, one related 
to the point observations and one related to the continuous 
valued ones, representing the contribution of the most recent 
observation from each modality.  Both of these innovations 
are scaled by a common posterior variance estimate, 
however, which is updated using features of both the point 
process and linear Gaussian observation equations.  As with 
the EKF, the contribution of the continuous valued 
observation process to the posterior variance estimate 
causes the posterior variance to decrease relative to the one-
step prediction variance by a magnitude related to the 
observation matrix at each time step, irrespective of the 
observation value itself.  As with the SSPPF, the 
contribution of the point process observation model has one 
component independent of the observation that always 
causes the covariance estimate to decrease, and another 
component relating to the point process innovation and the 
curvature of the intensity model.  This covariance estimate 
acts as a learning rate or gain term that determines the 
relative contributions of the newly observed data to those of 
previous data contained in the prior estimate, but does not 
address the relative contributions of the continuous-valued 
and point process observations.  The relative contributions 
from each modality come from the observation models 
themselves, with 1

1: 1 1: 1( ) ( )k k k kC N H N  scaling the 
contribution from the linear Gaussian model, and 

| 1

log

k k

k

k x

d
dx

 scaling the contribution from the point process 

observations.

3. COMPARISONS TO SSPPF AND KALMAN 
FILTER

The mixed state point process filter described above is a 
linear recursive algorithm in that the state at time kt  is a 
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linear function of the state at the previous time step.  If we 
instead evaluate the Taylor expansion of the posterior 
distribution at the point |k k kx x , then we obtain a 
nonlinear algorithm whose estimator coincides with the 
maximum value of a Gaussian approximation to the 
posterior density.  The estimation algorithm then takes the 
following form: 

|
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Expressed this way, the algorithm is appreciably similar to 
the standard description of the Kalman filter, but includes 
additional components in the posterior mean and variance 
equations that relate to the point observation process.  The 

kK  term in equation 9 generalizes the Kalman gain that 
appears in the standard filter so as to include the effects of 
the point process observations on the one-step prediction 
variance.  This term provides the learning rate for the 
estimation algorithm from the continuous valued 
observations.  Clearly, if 0kC  at all times, signifying that 
the continuous valued observations are not informative 
about the state process, then this generalized gain term is 
also zero and the algorithm reduces to the MAP filter for 
purely point process observations.  Similarly, if there were 
no point process observations, that is, if k  and kN  were 
everywhere zero, then the above algorithm reduces to a 
standard Kalman filter. 

4. APPLICATION 

We applied the mixed process filter given by equations (4)-
(7) to the problem of decoding a reaching movement from 
simulated spiking activity and LFPs from primate primary 
motor cortex. 
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