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ABSTRACT

 
Brain Machine Interfaces (BMIs) have recently received 

significant attention from the neuroscience and engineering 
communities as a result of striking advances in monitoring, 
processing, and modeling brain function at multiple temporal and 
spatial resolutions. These advances, however, have also raised 
significant challenges to both communities that are becoming the 
focus of numerous ongoing research efforts.   

  Broadly categorized based on their level of invasiveness, 
BMIs relying on implantable microelectrode arrays (MEAs) have 
received the most attention. This paper briefly reviews some 
fundamental concepts underlying the operation of MEA-based 
BMIs and highlights in particular the signal processing challenges 
faced by these systems in light of their resource-constrained 
operation. Finally, we summarize some of our recent progress in 
this area and suggest some open questions for future research.  

 
Index Terms— Nervous system, brain machine interface, 

wavelets, decoding, spike trains 
 

1. INTRODUCTION
 
At the crossroad of neurophysiology and psychology, brain-
machine interfaces (BMIs) stand as a promising technology for 
linking and translating neurophysiological signals to actual 
behavior, and vice versa. Some 140 years ago, neuronal signaling 
was artificially induced in the motor cortex using a stimulating 
electrode placed in the vicinity of small groups of neurons [1]. 
Nowadays, inducing a network-wide pattern of neural activity 
across targeted cortical and subcortical areas is becoming a 
standard technique for evoking distributed brain responses that can 
mediate an entire motor behavior, such as treating the debilitating 
symptoms of Parkinson’s Disease [2].  

Much research has focused over the years on developing 
devices for sensing large scale neural activity. The objective is to 
enhance our basic understanding of the dynamic operation of the 
functional brain and characterize any causal relationships between 
the measured neural activity and the observed behavior. This 
research has progressed enormously in recent years, owing largely 
to technological advances in brain imaging methodologies such as 
functional Magnetic Resonance Imaging (fMRI), Diffusion Tensor 
Imaging (DTI), Electroencephalographic (EEG) and 
Magnetoencephalograophic (MEG) recordings. Perhaps the most 
promising among all is the advent of high-density microelectrode 
arrays (MEAs) that can be implanted in the vicinity of small 
populations of cortical neurons [3, 4]. These devices permitted 

monitoring the collective activity of ensembles of neurons with 
temporal and spatial resolution far exceeding what is offered by 
surface EEG electrodes or fMRI. The technology is already paving 
the way to improve the lifestyle of many patients with severe 
neurological diseases and disorders or traumatic brain injury 
following stroke [5]. 

MEA-based BMIs, however, are severely resource-constrained 
in the face of numerous signal processing tasks that need to be 
performed to extract relevant biological information. These 
constraints may preclude their usage in many future applications 
that require high precision, ubiquitous and real time computations 
to take place. This paper is exclusively focused on reviewing some 
of these challenges, and summarizes our most recent effort to 
alleviate them. Non-invasive BMIs (e.g. EEG or fMRI-based) are 
outside the scope of this paper [6]. 

  
2. BMI SYSTEM OPERATION

Single neuron firing pattern is believed to be the primary carrier of 
information essential for functional brain networks. Penetrating 
MEAs implanted in cortical tissue are capable of recording the 
activity of multiple neurons as well as local filed potentials (LFPs) 
[3, 4]. The later is believed to represent the collective, 
synchronized activity of much larger and more distal neuronal 
populations. Because of this lack of precision about the origin of 
LFP sources, multi-neuron activity has received more attention in 
BMI applications, largely due to the increased temporal and spatial 
resolution.  

2.1. Spike Detection and Sorting 
 

The signals recorded with MEAs are typically an instantaneous 
mixture of signals from multiple neurons contaminated by large 
degrees of noise. The noise is presumably from numerous other 
biological sources that may or may not be representing the 
observed behavior, in addition to sources of instrumentation noise 
and electromagnetic interference. The multi-neuron activity is 
typically represented by sequences of 1-2 ms action potentials -or 
spikes- that have to be detected in the noisy observations prior to 
any further processing. Spike detection can be a challenging task 
given the high levels of time-varying neural noise that may 
obscure spikes of interest from neighboring neurons, particularly 
in stimulus driven activity [7].  

The spikes, once detected, have to be sorted out to segregate 
the response of each neuron in the recorded population. This is one 
of the most challenging tasks in BMI system operation. Spike 
waveforms from different neurons can be largely correlated as 
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illustrated in Fig.1a, precluding the usage of classical blind source 
separation algorithms to separate individual neurons’ responses. 
Moreover, spike waveform shape can be highly nonstationary over 
millisecond time scales (particularly during bursting periods) to 
even hours and days [8-10].  

Sparse representation using wavelets was shown to provide a 
powerful solution to the spike detection and sorting problems 
under highly nonstationary conditions [11-15]. The idea stems 
from the ability of wavelets to provide very compact, class-
dependent representations of spike waveforms. When used in 
conjunction with subspace-based array processing techniques, 
complex event structures such as those resulting from 
simultaneous firing of two or more neurons can be efficiently 
resolved [14]. Fig. 1b shows example feature space of the sparse 
representation for 5 spike classes and quantitative analysis of the 
resultant “clusters” (the true class of each spike is known in this 
case). Fig. 1c shows quantitatively the spike class separability, 
defined as the ratio of the cluster separation to the cluster spread in 
the reconstructed signals after hard-thresholding their wavelet 
transform coefficients at various threshold levels. This illustrates 
that spike detection and sorting is simultaneously enhanced along 
with data compression. The later feature is highly desirable for a 
fully implantable BMI system with wireless data telemetry [11].  

In cortical areas such as the motor cortex, firing rate is 
predominantly believed to carry all the information about 
movement intentions [16]. Direct estimation of the instantaneous 
firing rate of individual neurons is a critical feature for real time 
BMI operation [17]. We have shown that the sparsely-represented 
spikes can be regarded as irregular samples of the instantaneous 
rate function. Therefore, estimating the rate is feasible by 
extending the wavelet decomposition of the thresholded transform 
to levels where the basis support becomes comparable to the time 
constant of the firing rate functions of the recorded neurons (Fig. 
1c). This step substantially alleviates the complexity that would 
arise due to the need to decompress the data (through inverse 
wavelet transformation) followed by time-domain spike sorting in 
the classical sense.  
 
2.2. Ensemble spike train analysis 

 
Associations among constituent groups of neurons thought to be 
orchestrating the processing of stimuli or representing behavior 
have to be identified in the ensemble spike trains. The complexity 
of this task stems from the variable time scale at which neurons 
interact [18]. For example, synchrony is thought to play an 
important role in stimulus encoding in the visual and auditory 
cortices, while its role in motor cortex remains highly debated. In 
addition, cortical neurons are consistently observed to vary their 
receptive fields (or tuning functions) as a result of cortical 
plasticity [19]. This complexity increases dramatically with 
modest increase in the number of neurons and with the number of 
elements in the stimulus vector.  

From a system identification standpoint, identifying the 
neural circuit involved in dynamically encoding the observed 
behavior is an important but nontrivial task. An unknown number 
of neurons is typically recorded in a given session and that number 
seem to vary substantially over recording sessions. The source of 
this variability may be caused by either physiological changes in 
the extracellular medium surrounding the electrode array (e.g. 
electrode drift, cell death or migration, electrode encapsulation due 
to adverse tissue reaction), or can be attributed to the 

reorganization of cortical representations that accompany learning 
and development. These observations seem to reinforce Hebb’s 
original hypothesis that each neuron can participate in different 
cell assemblies at different times, indicating variable degrees of 
involvement in encoding stimuli parameters that is a function of 
the behavioral state, the particular brain area, and the subject’s 
level of experience with the stimuli [20]. It can be argued that 
temporary computational demands may activate relatively short-
lasting clusters of spatially distributed -but functionally 
interdependent- neurons to inform the brain about a specific 
behavioral state and hence optimize cortical resources to carry out 
instantaneous biological computations. 

We have recently developed a new algorithm to adaptively 
determine these functionally-interdependent neurons from the 
observed ensemble activity [21]. The algorithm relies on 
computing a similarity measure across multiple time scales 
between pairwise neurons and fusing these measures using SVD to 
connect neurons (objects) in a graph representation. Spectral 
clustering is performed in this representation to identify neurons 
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(b) 
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Figure 1: (a) Representative sample of spikes from five well-
isolated neurons and their template waveforms. (b) Time 
domain feature space for the spikes in (a), wavelet 
decomposition tree path and feature space for the sparse 
representation across 5 decomposition levels. (c) (Left) Class 
separability versus compression rate compared to time domain 
separability, (Right) true (blue) and estimated rate (green) for 
spike events (red) of a sample neuron across wavelet nodes.
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with similar firing patterns in a probabilistic sense. In Figure 2, we 
demonstrate a 16-neuron/4-cluster cortical network model in which 
various inhibitory and excitatory synaptic connections were 
created over time between neurons across clusters that were 
otherwise independent. Each neuron’s firing rate was modeled as 
inhomogeneous Poisson process with firing probability that 
depends on Ht, defined as the neuron’s own firing history and 
those of other neurons connected to it as [22]: 

 P
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where ij is the synaptic coupling between neurons i and j, i 
denotes the background rate of neuron i, Ij(t-m ) is the spike count 
of neuron j in window m,  is the bin width used to sample the 
spike train, Mij indicates the interval length (in bins) of past 
interaction between the two neurons, and P is the total number of 
neurons in the population. Synaptic coupling was modeled as a 
damped sinusoid: ijijijijijij MtBMtfAt expsin 2 , 

where (+/-) indicates excitatory/inhibitory interactions, 
respectively. The terms ijijij BfA ,,  are experimentally-derived, 

Gaussian-distributed parameters governing the temporal and 
spectral characteristics of the synapse strength. Figure 2b 
demonstrates the clustering accuracy is maximized at a time scale 
matching the history of interaction (chosen to be 100 ms) in the 
model, while Figure 2c demonstrates the compactness of the 
clusters as the connectivity between neurons in the same cluster is 
strengthened.  

 

 

 
Figure 2: (a) 16-neuron network. (b) Clustering accuracy vs time 

scale (c) Neuronal Pairwise distance vs connectivity strength  

2.3. Decoding the Ensemble Activity 
 

The outcome of the spike sorting step is a collection of neuronal 
response properties (precise spike time, rate, correlation, etc…) 
expressed in the spike trains that can be used to describe a cortical 
network “state”. Decoding this state is a key step to relate the 
observed spike trains to the subject’s behavior. Decoding 
algorithms fall in two broad classes: 1) Linear algorithms: based 
on the well-known minimum variance best linear unbiased 
estimator (MVBLUE) [23]; 2) Nonlinear algorithms (Bayesian): 
uses the prior distribution of observed responses given stimuli to 
estimate the posterior distribution of the stimuli given the observed 
response in a maximum likelihood sense [24]. In all existing 
decoding algorithms, neuronal responses consist of the firing rates 
estimated over a fixed bin width (typically 50-100 ms) and these 
are the sole response property indicative of the network state. As a 
result decoding filters poorly generalize to other types of non-
stereotypical behavior. These algorithms require extensive periodic 
“calibration”, even when recordings are stable and the subject’s 
performance remains steady [25].  

The large variability in individual neuron response across 
repeated trials underlines an inherent varying spectrum of temporal 
and spatial interactions among cortical neurons. An ultimate goal 
is to design these filters to faithfully decode neural signals 
observed when the subject is freely behaving and naturally 
interacting with the surrounding. We hypothesize that improved 
adaptive decoding can be achieved in this case by restricting the 
input to the decoder to a spatiotemporal neural subspace where the 
relevant task information resides. Thus, spike train clustering 
algorithms may constitute an important pre-decoding step to 
enable continuous assessment of the cortical network state by 
detecting any variations in the spatiotemporal patterns of 
interaction reminiscent of plastic changes in the cortex.  

   
3. PRACTICAL CONSIDERATIONS 

 
For MEA-based BMIs to be a viable augmentative or replacement 
technology to normal human function, it needs to be fully 
implanted, operate wirelessly to minimize patient’s risk of 
infection and discomfort, and continuously perform the above 
operations in real time to allow the patient to experience natural 
behavior when interacting with the surrounding. There are many 
technical challenges to these objectives. The shear amount of data 
that MEA-based BMIs record well exceeds 1 Mbps/channel. This 
is a major challenge to state-of-the-art biotelemetry systems, 
considering that arrays can be >100 electrodes. The problem is 
exacerbated by the need for real time signal processing with 
limited chip size and power consumption. Much research is 
currently devoted to optimize signal processing for real time 
processing within area-power efficient hardware. We have recently 
demonstrated the feasibility of area-power efficient circuitry for 
the sparse representation [25]. In addition, low-power wireless 
telemetry seems to be feasible [26]. Taken together, a fully 
implantable, completely wireless, MEA-based BMI system seems 
to be in the horizon. 

A closed loop BMI system relies mainly on visual feedback 
signals to inform the brain about behavioral states, of a prosthetic 
limb for example. Feedback signals need to be augmented to 
include other sensory information (such as tactile) to allow the 
patient to experience more natural behavior. These signals should 
be processed and delivered with the “correct format” in the 

EE  ==  CCrroossss--EExxcciittaattoorryy  
AAII  ==  AAuuttoo  IInnhhiibbiittoorryy  
CCII  ==  CCrroossss  IInnhhiibbiittoorryy  
Solid line = initial 
connection  
Dotted line = new 
connections  
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appropriate cortical sites. Intra-cortical electrical micro-stimulation 
therefore can play a fundamental role in this regard if its 
parameters are optimized to evoke the desired pattern of neural 
activity representing sensory experience.  
 

4. CONCLUSION

BMIs seem to be a promising technology to help achieve a 
better lifestyle for people who suffer from many motor disorders, 
depression, chronic pain, epilepsy and many others. We have 
reviewed some of the numerous challenges facing this technology 
from a signal processing perspective and provided some 
approaches to overcome them. Much research needs to be done for 
this technology to better serve human welfare.           
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