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ABSTRACT
Simulation, detection and estimation of the spread of a bio-

chemical substance are key elements in environmental mon-

itoring. Solving these problems are important for efficient

decontamination purposes and prediction of the cloud evolu-

tion.We present a set of tools describing the measurements

of an array of biochemical sensors through a physical dis-

persion model, which is amenable to statistical analysis. We

first approximate the dispersion model of a contaminant in a

realistic environment (for instance urban) through numerical

simulations of reflected stochastic diffusions describing the

microscopic transport phenomena due to wind and chemical

diffusion using the Feynmann-Kac formula. Second, we pro-

pose a Bayesian framework based on a random field for local-

izing multiple dispersive sources with small amounts of mea-

surements. Third, we present a sequential detector allowing

on-line analysis and detecting whether a change has occurred,

based on realistic numerical simulation. Numerical examples

illustrate our results for a dispersion among buildings.

Index Terms— Array signal processing, biochemical diffu-

sion, Feynmann-Kac formula, Bayesian estimation, Sequen-

tial detection.

1. INTRODUCTION

Simulation, detection and estimation of the spread of a bio-

chemical substance are key elements in environmental moni-

toring. In order to exploit a physical knowledge on the bio-

chemical dispersion phenomenon, we employ a forward phys-

ical dispersion model relating the source to the measurements

given by an array of biochemical sensors in realistic complex

environments such as urban or indoor scenarios. In our previ-

ous work, we presented detection and estimation techniques

for simple scenarios where analytical solutions to the trans-

port equations are available [1], or employed numerical solu-

tions given by finite elements methods [2].

We overview our results [3, 4, 5] that uses Monte-Carlo sim-

ulations for computing the transport model in realistic sce-
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nario. Our framework is amenable to the inclusion of com-

plex geometries as well as ad hoc stochastic models for wind

turbulence, Moreover it is efficient for large setup since its

computational load increases linearly with the number of sen-

sors and the time of diffusion. First, we present how to solve

the inverse problem. Localizing the origin of the spread of the

contaminant is indeed a major issue for environemental moni-

toring. We consider cases involving multiple sources and pro-

pose to use a generic Bayesian approach based on a Random

field. Second we show how to detect a biochemical release

as early as possible using a sequential detector. We propose

using a sequential generalized likelihood ratio test (GLRT) as

advocated by Lai [6] since some parameters of the diffusion

may be unkown.

This paper is organized as follows: in Section 2 we review

briefly the physical dispersion model as well as the measure-

ment model and present the setup for the numerical approx-

imations we proposed in our earlier work [3]. In Section 3

we present the Bayesian approach we adopted for solving the

inverse problem and in Section 4 we present the sequential

detector we developed in [4].

2. NUMERICAL APPROXIMATION FOR
COMPUTING PHYSICAL AND MEASUREMENT

MODELS

We assume that both the geometry and the average wind dis-

tribution are known. We assume that the wind has a known

main direction and that we have a software capable of com-

puting the wind distribution over the area. We also assume

that we know the diffusion properties of the contaminant (dif-

fusion coefficient) and that the sensors have been calibrated,

resulting in a known noise variance.

2.1. Physical and measurement model

We consider a bounded open domain D ⊂ R3. Let r =
(x, y, z) be a point in D. Denote by c(r, t) the dispersive

substance concentration at a point r and time t. The trans-

port equation in the presence of a wind field v(r, t) ∈ R3

is given by the equation ∂c
∂t = div(K∇c) − ∇c · v when
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the medium is assumed to be incompressible [1] where K
is a matrix of conduction (or diffusivity). We suppose that

K is function of the space variables. Let ∂D be the bound-

aries of the domain D. We assume[3] two kinds of domain

boundary conditions and divide ∂D into two disjoint subsets

denoted by ∂DN and ∂DD corresponding to Neumann con-

ditions (∇c(r) · n(r) = 0, for all r ∈ ∂DN 0 and Dirichlet’s

(c(r) = 0, for all r ∈ ∂DD) We also assume that the sources

have released a certain amount of a substance into the en-

vironment when the diffusion begins (instantaneous sources)

and denote by c0(r) the substance concentration at time t = 0
(release time).

To model the measurements, we suppose a spatially dis-

tributed array of m biochemical sensors located at known

positions r1, . . . , rm. We assume that each sensor takes

measurements at times t0, . . . , tn. Referring to our earlier

work[7], we adopt the measurement model y(ri, tj) =
c(ri, tj) + ε for i = 1, . . . , m and j = 0, . . . , n with

ε ∼ N (0, σ2
e) representing measurement noise and modeling

errors.

2.2. Transport modeling using a Monte Carlo approxi-
mation

We present the Monte Carlo approach we adopted[3] to nu-

merically solve the transport equation in the presence of tur-

bulence. We use a discrete version of the domain D. Denote

by Λ a set of sites in D. We partition D into small elements

ΔD(s), i.e. D =
⋃

s∈Λ ΔD(s) with ΔD(s) ∩ΔD(s′) = ∅
for all sites s �= s′ For a given sensor, located in ri, consider

the following random walk :

Xi
0 = ri, dXi

t = −v(Xi
t)dt +

√
2K(Xi

t)dWt (1)

We consider m stochastic processes started in the sen-

sor locations. According to the Feynman-Kac formula

(see our paper[3] and references therein), the result of the

diffusion equation at a given time tj and location ri is

c(ri, tj) = E
[
c0(Xi

tj
)
]
. We use suitable Monte Carlo

simulations of the processes Xi
t to obtain, for each sen-

sor, N final points denoted by X1
ri,tj

, . . . , XN
ri,tj

. Let

pi,j,s = 1
N

∑N
k=1 1(Xk

ri,tj
∈ ΔD(s)) be the average number

of such points falling in the element ΔD(s) For a given initial

value function r → c0(r), the Feynman-Kac formula yields

ci,j ≈
∑
s∈Λ

pi,j,sc0(s) (2)

where ci,j is the calculated estimate of the concentration at

location ri and time tj .

We denote by y all the measurements yi,t lumped into a

single m(n + 1) dimensioned vector. Denote by c the vector

of the initial concentrations c0(s) for all point s ∈ Λ. By

assuming independent measurements and Gaussian noise we

obtain the following likelihood from equation (2)

f(y/σe, c) =
1

(
√

2πσe)m(n+1)
· · ·

· · · exp− 1
2σ2

e

m∑
i=1

n∑
t=0

(
yi,t −

∑
s∈Λ

pi,t,sc0(s)

)2

.

We developed[3] an ad-hoc procedure to account for wind

turbulence based on the wind direction assumption and a pro-

gram [8] dedicated to the Navier Stokes Equations. Our ap-

proach is enabled by the Monte-Carlo approach we employ

.

3. LOCALIZING THE SOURCES

We describe briefly in this section the Bayesian approach we

employed[3] for inferring the source location from the mea-

surements. This task is useful for predicting the cloud evo-

lution in space and time dispersion by applying the transport

model to the estimated source(s) location(s).

3.1. Bayesian model

Prior model: We use the following mixture as a prior model

for the (μz). We state that μz should be equal to 0 with a

probability 1 − ρ and uniformly distributed in [cmin, cmax]
with a probability ρ. The prior term can be written as

fprior ((μz)z∈Λ/ρ) =
∑

z∈Λ(1 − ρ)1[μz = 0] + ρ1[μz ∈
cmin, cmax]] The mixing parameter ρ should be chosen ac-

cording to the size of the domain D and the number of sites

|Λ|. A way to choose ρ is to make a prior decision about the

average surface of the release. In practice we took ρ = 0.01,

meaning that we state that the source surface is expected to

be 1% of the overall domain area.

Posterior density: The likelihood of the measurements, the

prior model, and Bayes formula result in the following a pos-
teriori distribution:fpost

(
(μ)z∈Λ/yt0 , . . . ,yn, σe, ρ, t0

)
=

C
(
2πσ2

2

)− q
2 ((1− ρ)Υ + ρΨ) f(y/σe, μ) where Υ = card{z ∈

Λ : μz = 0} and Ψ = card{s ∈ Λ : μz > 0}, and C is the

normalizing constant.

Estimator: For each site we consider the posterior prob-

ability of having a source at the location z, Ppost(μz > 0)
as well as the posterior conditional expectation of the source

concentration Epost(μz|μz > 0).
Algorithm: We employ [3] a Monte Carlo Markov chain

method to sample the posterior distribution, and more pre-

cisely a Metropolis Hastings approach. This kind of sampler

is especially suitable for our case, since we do not know the

normalizing constant C. The estimated normalizing constant

value is used for determining the diffusion starting time t0
(see [3]).
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3.2. Results

We present in Figure 3.2 the result of the sampler. On the left,

we show the posterior probability of having a source in each

considered location (note that the gray-scale is logarithmic).

The true locations of the sources were correctly found. On

the right we show the a posteriori expectation of the initial

intensity in each location conditioned by the event that there

is a release. Note that in the locations were the probability of

having a source is high, the estimated intensity is close to the

real value (we recall that we used an initial intensity c0 = 5).

For that particular example, we assumed the initial time to

be known (t = t0). In the following section, we provide a

result using the Bayesian evidence, for selecting a relevant

initial time hypothesis. These results show that the random

field approach is powerful for finding several sources.
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Fig. 1. Results of the source localization estimation given

by the Bayesian approach. Left: simulated setup, right

Ppost(μz > 0), the probability of having a source in each

location (logarithmic scale).

4. SEQUENTIAL DETECTION

In this section we describe a framework [4] for detecting a

biochemical release using the incoming measurements. In

sequential analysis, the measurements are considered as an

incoming flow, and the goal is to select the hypothesis of in-

terest as soon as possible. For a detailed review of sequen-

tial detection, see Lai[9]. The two major competitive pro-

cedures mostly used today are the Shiryaev-Roberts-Girshik-

Rubin [10] algorithm and Page’s cumulative sum (CUSUM)

algorithm [11].

4.1. A sequential detector

In detection theory, a natural idea when dealing with unknown

parameters is to use the likelihood of the best hypothesis un-

der each assumption [12] resulting in GLRT.

We consider three unknown parameters: the initial time δ,

the location s ∈ Λ, and the intensity μ of an impulse sub-

stance source. We assume that the variance σe of the noise is

known through a calibration step. Let yt = (y1,t, . . . , ym,t)T

be the vector of m measurements given by the m sensors at

time t. We then obtain the following sequential generalized

likelihood ratio

L̃n(y0, . . . ,yn) = max
0≤δ≤n

max
s∈Λ

sup
μ≥0

f1
s,μ(yδ, . . . ,yn)
f0(yδ, . . . ,yn)

(3)

Denoting by γ = n − δ + 1 the number of measurements

available at time n under the hypothesis that the release oc-

curred at time δ and obtain the following expression and

incorporating the maximum likelihood estimator in the de-

tector expression, we obtain[4] the following ratio value

lδ,sn (yδ, . . . ,yn) =
(
max

{
0, T δ,s

γ (yδ, . . . ,yn)
})2

where

T δ,s
n (yδ, . . . ,yn) =

Pm
i=1

Pγ
t=0 pi,t,syi,t+δ√Pm

i=1
Pγ

t=0 p2
i,t,s

. We derived a re-

cursive formulation [4] of the test that is useful in practice.

The resulting test can be described as follows: we consider

the stopping time τ = inf{n ≥ 0 s.t. Ln ≥ η} with

Ln = maxn−γmax+1≤δ≤n maxs∈Λ ls,δ
n where η is the test

threshold.

4.2. Threshold, false alarm rate and performance

In [4], we focused on how to select a threshold. In a change-

point detection framework the goal is to keep on testing while

new measurements are arriving. Instead of fixing a false

alarm probability, the usual approach is to decide the average

run length (ARL) before a false alarm denoted τ0 = EH0 [τ ]
which is the expected duration before a false alarm. We pro-

vide in [4] an analytical result in terms on a bound on the

average run length before false alarm for fixing η .

We provide in [4] three performance measures : we exam-

ine the probability of detection and show how to compute the

minimum signal intensity level that achieves a desired perfor-

mance as a function of the release location. We also consider

the average delay before detection.

4.3. Simulation

We present a result corresponding to the outdoor setup de-

scribed in Figure 1 with six sensors and two initial release

locations. We take the noise as σe = 0.3. In Figure 2 we

present an example of a detection scenario. The first six rows

correspond to measurements by the six sensors. Until time

t = 90 the measurements are given by the null hypothesis

(σe = 0.3). After time t = 90, we use the measurements

predicted by the model. The last row shows the test statistic

T and the threshold computed to achieve a false-alarm rate of

α = 10−5. Note that this simulation included two sources,

whereas the detector has been designed under a single-source

hypothesis.

5171



5. CONCLUSION

We have presented a new way to compute chemical transport

equations in realistic environments and proposed a Bayesian

framework to solve the inverse problem. The results are

potentially useful for array optimal design. The proposed

method allows the inclusion of a realistic stochastic wind dis-

tribution accounting for turbulence that proved to be powerful

in practice. Our results are particularly useful for complex

environments such as urban. In a future work we plan to work

on optimal design for configuring the sensor array and obtain

optimal monitoring.
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Fig. 2. On-line detection by an array of sensors illustrated

by a simulated release on the framework of Figure 1 at time

t = 90. The horizontal axis corresponds to time. The top

six figures show the simulated measurements for each of the

six sensors (see Figure 1). The noiseless measurements (solid

lines) are given by the null hypothesis until t = 90. At time

t = 90, a chemical diffusion has occurred and we use the

measurements given by the diffusion simulation augmented

with white noise (σe = 0.3). The bottom figure shows the

test value (solid line) and threshold (dashed line), computed

to achieve a false-alarm rate α = 10−5. The vertical line

of the last row (t = 90) corresponds to the chemical release

instant. The release is detected when the test value is above

the threshold (t = 98).
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