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ABSTRACT
Networked embedded acoustic sensors and imagers allow sci-

entists to observe biological and environmental phenomena

at high sampling rates and multiple scales. Such sampling

can create large data sets that often require some form of au-

tomated processing to extract useful information. However,

to guarantee the accuracy of the data, the scientist must be

included in the processing, rather than treating it as a black

box, an approach we call interactive environmental sensing.

In this paper we describe the challenges of such an approach

and motivate it with several examples from bioacoustics, plant

phenology and avian biology.

Index Terms— Image processing, Acoustic arrays, Envi-

ronmental factors, Interactive systems, Automation

1. INTRODUCTION

Environmental sensing has long been a strong motivator for

embedded systems research. The capabilities of networked

embedded systems to increase sampling density and coverage

have enabled scientists to study phenomena at scales previ-

ously impossible [1]. Acoustic sensors and imagers are espe-

cially important for capturing biological phenomena but with

high frequency sampling can quickly create very large data

sets. Although using these sensors can transform the observa-

tional capacity, traditional manual processing then becomes

impractical. Often, the only way to analyse these data sets is

to reduce them by automated means.

To answer scientific questions using the data collected

by embedded networked sensing, scientists must have con-

fidence in the reliability of the sensors and in the quality of

the data. At a higher level, confidence is also required in

the accuracy of automated detectors and classifiers used to

reduce large data sets. Although automation is desirable in

well-characterized processes, the ecological events being ex-

amined by environmental scientists may not be clearly de-

fined or be so complex that events are difficult to automati-

cally characterize a priori – they require iteration.
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The concept of interactive environmental sensing impli-

cates the scientist as a necessary part of the process which is

used to reduce the data, as well as enabling interaction when

anomalous or unexpected data presents itself. This approach

has advantages – first, the scientist can be assured that the data

gathered is of the expected quality, and second that the auto-

matic data reduction and analysis techniques are accurate.

This paper motivates and describes signal processing chal-

lenges presented by interactive environmental sensing. We

discuss applications and challenges from three examples in

two areas of signal processing: acoustic and image process-

ing. Our examples are drawn from bioacoustics, plant phe-

nology and avian biology. We describe the general problems

facing these types of interactive sensing applications and sub-

sequently discuss future challenges.

2. ACOUSTIC ARRAY

In bioacoustics research, being able to detect, classify and lo-

calize animal and bird vocalizations is an important part of

understanding behavior. Traditional approaches involve ei-

ther manual observation in the field by the scientist, or de-

ploying a wired array of microphones over the area of interest

to record data for offline analysis.

We have developed two generations of wireless acoustic

monitoring boxes, designed for rapid, attended deployment

and in-field processing [2]. These platforms feature a four-

microphone sub-array, arranged in a tetrahedral configuration,

enabling the use of techniques requiring highly coherent sig-

nals (such as beam forming) per-node. A network of acoustic

boxes can time synchronize and self-localize to high accu-

racy using acoustic time of flight and direction of arrival tech-

niques [2]. Being able to process vocalizations on-line allows

the scientist to get an idea of the quality of the data that is

being gathered, as well as enabling reconfiguration, to react

to unforeseen events such as phenomena moving out of the

area covered by the network. These types of interaction are

not possible by analyzing an off-line data set.
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Fig. 1. Example of the detection of an event of interest against

the estimated noise floor.

2.1. Event Detection

An approach is taken using an on-line event detector to dis-

criminate events of interest in a continuous stream of audio

based on energy in specific frequency bands. The detector as-

sumes a Gaussian ambient noise model, adaptively estimating

the noise floor using two Exponentially Weighted Moving Av-

erage (EWMA) filters for mean and variance. Field tests have

shown good performance and suitability for on-line event de-

tection of the vocalization of marmots [3].

The event detector is optimized by processing one channel

of audio, decimating to 24KHz and processing only 1/4 of the

samples taken (a typical marmot vocalization has a length of

0.04 seconds). The energy of the samples is determined in

the frequency domain, taking the magnitude of the sum of

pre-determined frequency bins of interest. This energy feeds

in to the detector, and depending on its value is determined

to be either noise or an event of interest. Figure 1 shows an

example of a detection in the band of interest compared to the

estimated noise floor.

This type of detector is ideal to run on-line on an em-

bedded platform, and is immediately applicable to different

species vocalizations, by tuning specific noise threshold and

frequency interest parameters. These pre-determined charac-

teristics would be observed by the scientist in the field, and

used to adjust the detector.

2.2. Localization

Localizing an event of interest over a distributed network of

acoustic boxes is a multi-step process of sub-array processing,

event clustering and fusion. Thanks to the close microphone

proximity on each sub-array, the Approximated Maximum

Likelihood algorithm [3] can be utilized, which estimates the

likelihood of direction of arrival (DoA) at each possible de-

gree (or higher). This approach presents a trade-off between

sub-array size and spatial aliasing which is comparable to the

Nyquist limit; energy in wavelength frequencies lower than

two times the microphone spacing will be aliased (see [3] for

a detailed discussion).

Based on detection time, events must be clustered together

such that they represent the same animal vocalization, and

then suitably combined to form an overall estimate. This can

be naively done by creating a likelihood map, where each

point on the map represents the combination of the direction

of arrival likelihoods of all nodes that detected the event [3].

3. PLANT PHENOLOGY

In plant phenology, yearly patterns in timing of bud burst,

flower bloom and the numbers and sizes of leaves are impor-

tant indicators of environmental conditions. Plant phenology

has been identified as a crucial contributor to global change

research [4]. Asynchrony of phenological events may disrupt

plant and animal communities and be a signal of significant

environmental change [5].

Collecting phenological data manually is time-consuming

and labor-intensive and thus much basic ground-based phe-

nological information is lacking [6]. The use of actuated im-

agers as biological sensors is therefore ideal for wider pheno-

logical studies, allowing a higher frequency of observations,

especially over large areas; Imagers can also be left in remote

locations which are troublesome for the scientist to repeatedly

access.

3.1. Leaf and Flower Detection

At James Reserve (Idyllwild, CA), high-resolution, pan, tilt,

zoom (PTZ) controlled cameras mounted on fixed towers make

daily scans of their surroundings, aiming to capture plant phe-

nological events (gathering about 1,200 images/day). The

cameras must be zoomed in closely when scanning, due to the

small size of some of the plants/flowers. Manually inspecting

the resulting image streams for changes in leaves or flowers

is an unreasonable task, so automated detection is desirable.

Unfortunately while it may be easy to detect the presence of a

well-developed flower using color characteristics, some flow-

ers and leaves have weaker color characteristics and can be

mostly missed by automated detectors.

The goal is to reduce the images in the data stream to

only those which are candidates for containing phenologi-

cal events. The scientist can then visually verify whether a

flower is present in the candidate image, for instance. After

this, the scientist can inspect images captured on previous or

subsequent days at the same PTZ coordinates to find the exact

timing of important events, such as bud burst or senescence.

Flowers and leaves being monitored vary in size, shape

and color which affect how easy they are to detect. This is

compounded by changes in lighting conditions from day to

day. The easiest types of plant phenological events to au-

tomatically detect are the presence of numerous (or large),

leaves or flowers that are in high contrast to the background.
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Fig. 2. Manual vs automated counting of blooming wall

flower, Erysimum capitatum. The automated prediction of

blooming events closely matches the manually counted one.

In these cases, using the Hue, Saturation, Lightness (HSL)

color space is preferable to RGB (in which all three compo-

nents change as light levels change). Hue represents a con-

tinuous variable for measuring color that is independent of

lightness and saturation - thus, if the ambient light changes,

hue will not change and the salient feature will still be de-

tected.

3.2. Tools for Interaction

To provide the interaction with the data set that the scientist

requires, a visualization tool has been implemented. The tool

is a color filter applied to selected images. By setting the

min/max values of individual color components, the tool pro-

vides a quick way to mask areas of an image. After a filter

has been optimized, it can then be applied automatically to

the entire image set, producing a reduced set of filtered im-

ages.

Other integrated tools are used to help improve contrast

and reduce noise in the image (constrast stretching, histogram

equalization, Gaussian blur). A rough flower counter has also

been implemented (see Figure 2). For data quality assurance,

the scientist can easily tag images, allowing the performance

of the automated system to be measured against a ground

truth.

4. AVIAN BIOLOGY

Avian biologists investigate trends and differences in behavior

that affect reproductive success (and the effects of microcli-

mate variability on this). Traditionally, avian biologists man-

ually inspect nesting locations and visually log data about the

state of the nest. The number of observations is increased

by deploying imaging sensors (sampling every 15 minutes) in

nest boxes over a given area. The avian biologist can then

interactively use tools for nest box processing to target visual

investigation of potentially anomalous or unforseen events.

Fig. 3. An indication of the adaptation of the threshold indi-

cating bird presence/absence, based on corner counting.

4.1. Processing Goals and Challenges

The aim in processing the stream of images gathered at a nest

box is to determine a bird’s presence and absence, count num-

ber of eggs, and determine the precise timings of transitions

among stages of the nesting cyle. The scientist is also in-

terested in observing hatching, feeding and parental care be-

haviour.

Using imagers in fixed positions in the nest box is advan-

tageous because the size of eggs can be characterized, and the

area covered by the camera’s field of view is constant. Also,

because the image stream represents the nest over a time pe-

riod, each image does not have to be processed as if it were

not unrelated to the others.

However, nest box images can be influenced by variable

lighting quality depending on night and day. Therefore, each

nest box is lit using Infrared (IR), providing a consistent (non-

disturbing) lighting source - this requires that all images cap-

tured must be grayscale. Sensor placement and sensor sen-

sitivity affect the similarity of images across different boxes,

and different species may build nests in different ways. This

can limit the general applicability of any image processing

techniques applied.

4.2. Bird and Egg Detection Techniques

Even though the data stream is temporal in nature, a simple

approach (such as frame differencing) will not work given the

relatively low sampling rate. Instead, birds are detected by

taking advantage of interest points. In this case, corners (ar-

eas in the image where gradients are large in two directions)

are used as interest points. These points can be found using

a Harris-Stephens detector [7]. Since a bird’s feathers have

a smooth, approximately homogenous appearance, they will

have a lower density of interest points than a more textured re-

gion, such as the nest. Bird presence can then be determined

by taking the midpoint between minimum and maximum in-

terest points over a four day window of images (around 200).

This midpoint will change adaptively, and is used to decide
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whether a bird is present or not, as shown in Figure 3.

For images which have been determined not to contain

birds, eggs are counted. This problem is approached not by

trying to count the number of eggs in a single image (which

can be difficult, even for a human), but by counting the num-

ber of eggs in the nest box over time. Each image is searched

for blobs of interest, using a Scale Invariant Feature Trans-

form (SIFT) detector [8]. Blobs are areas exhibiting maximal

response to a Laplacian of Gaussian filter (LoG); the output of

the SIFT detector gives a scale for the blob region. The mean

and variance of intensity around this location is found to be

characteristic of eggs and are used to discriminate between

eggs and other egg-like objects. Using this output as input

to a Hidden Markov Model (HMM) leverages the temporal

constraints of the image stream, and accounts for the under-

lying statistic of occluded eggs and the existence of egg-like

objects, to deduce a final egg count and transition in nesting

stages.

5. CONCLUSION

In this paper, we have described interactive environmental

monitoring and the signal processing challenges it brings. In

each of our examples there is the theme of automated event

detection in a signal stream, be it image or acoustic. It is clear

that in well-characterized problems, event detectors are read-

ily automated. However, many of the challenges we see in

environmental monitoring require iteration and human inter-

action to be adequately flexible.

The creation of suitable classification algorithms to dis-

criminate the unique vocal signatures of not only species, but

individuals in a species is highly desirable. Coupling auto-

mated event detection and localization with classifiers that

can run on-line and in the field will undoubtedly assist bioa-

coustics research and enable new research questions to be

posed in the future.

In plant phenology, distinguishing the leaves of different

species using an imager in a stand of mixed trees has so far not

been possible. Additionally, small annual and perennial wild-

flowers are particularly difficult to detect using color alone

and thus other, more sophisticated image processing tools,

such as template matching or SIFT, may hold promise.

It has been observed that different techniques work bet-

ter at different stages of the avian cycle. Therefore, enabling

a level of adaptation where the image processing tools could

autonomously infer the stage of the cycle and then adapt their

processing would be highly desirable. Having the scientist

train the system to detect change points, after which the sys-

tem could respond to its own context classification, is a promis-

ing approach.

Whilst automated systems to perform context-aware pro-

cessing of data from biological sensors are the desirable end-

goal, the scientist is likely to be in the loop for the foresee-

able future. Thus, interactive environmental sensing will still

be required and will necessitate concurrent technological ad-

vances in data browsing, data processing, and visualization

tools.

As automation of the current challenges we see in interac-

tive environmental sensing become more feasible, challenges

will occur in accuracy improvement, self-adaptation, context-

aware processing and self-configuration.
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