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ABSTRACT
We consider an underdetermined linear system of equa-

tionsAx = b with non-negative entries inA and b, and seek
a non-negative solution x. We generalize known equivalence
results for the basis pursuit, for an arbitrary matrix A, and
an arbitrary monotone element-wise concave penalty replac-
ing the �1-norm in the objective function. This result is then
used to show that if there exists a suf ciently sparse solution
toAx = b, x ≥ 0, it is necessarily unique.

Index Terms— Sparse representation, redundancy, non-
negative, uniqueness, basis pursuit, matching pursuit.

1. INTRODUCTION

We consider an underdetermined linear system of equations
of the formAx = b, where the entries ofA ∈ R

n×k and b ∈
R

n are all non-negative, and seek non-negative solutions x ∈
R

k to this system. Such a problem is frequently encountered
in signal and image processing, in handling of multi-spectral
data, considering non-negative factorization for recognition,
and more (see [6, 7, 8, 9] for representative work).
When considering an underdetermined linear system (i.e.

k > n), with a full rank matrix A, the removal of the non-
negativity requirement x ≥ 0 leads to an in nite set of feasi-
ble solutions. How is this set reduced when we further require
non-negativity? Assuming there could be several possible so-
lutions, the common practice is the de nition of an optimiza-
tion problem of the form

(Pf ) : min
x

f(x) subject to Ax = b and x ≥ 0, (1)

where f(·) measures the quality of the candidate solutions.
Possible choices for this penalty could be various entropy
measures, or the general �p-norm for various p in the range
[0,∞). Popular choices are p = 2, p = 1, and p = 0 (en-
forcing sparsity). For example, recent work reported in [10]
proved that the p = 0 and p = 1 choices lead to the same
result, provided that this result is sparse enough. This work
also provides bounds on the required sparsity that guarantees
such equivalence, but in a different setting.
Clearly, if the set {x| Ax = b and x ≥ 0} contains only

one element, then all the above choices of f(·) lead to the
same result. In such a case, the above-discussed �0-�1 equiv-
alence becomes an example of a much wider phenomenon.

Surprisingly, this is exactly what happens when a suf ciently
sparse solution exists. The main result shown of this paper
proves such a uniqueness of sparse solutions, and provides a
bound on ‖x‖0 below which such a uniqueness takes place.
There are several known results reporting an interesting

behavior of sparse solutions of a general under-determined
linear system of equations, when minimum of �1-norm is im-
posed on the solution (the Basis Pursuit algorithm) [2, 3]. For
the case where the columns of A have a unit �2-norm, these
results state that the minimal �1-norm solution coincides with
the sparsest one for sparse enough solutions. As mentioned
above, a similar claim is made in [10] for non-negative solu-
tions, leading to stronger bounds.
In this work we extend the basis pursuit analysis, pre-

sented in [2, 3], to the case of a matrix with arbitrary col-
umn norms and an arbitrary monotone element-wise concave
penalty replacing the �1-norm objective function. A general-
ized theorem of the same avor is obtained. Using this result,
we get conditions of uniqueness of sparse solution of non-
negative system of equations, as mentioned above. Interest-
ingly, there is no need to use an �1 penalty – non-negativity
constraints are suf cient to lead to the unique (and sparsest)
solution in such cases.
The structure of this paper is as follows: In Section 2

we extend the basis pursuit analysis to the case of arbitrary
monotone element-wise concave penalty and matrix A with
arbitrary column norms. This analysis relies on a special def-
inition of coherence measure of the matrixA. We also intro-
duce preconditioning that improves this coherence. In Section
3 we develop the main theoretical result in this paper, claim-
ing that a suf ciently sparse solution of {Ax = b,x ≥ 0}
is unique. More details on the practical implications of this
paper’s results are given in [1].

2. BASIS PURSUIT: AN EXTENDED RESULT

In this section we develop a theorem claiming that a suf -
ciently sparse solution of a general under-determined linear
system Dz = b is necessarily a minimizer of a separable
concave function. Note that we use a different notation for
the linear system – the reason for this change will be clari ed
in the next section.
The result we are about to present and prove extends The-

orem 7 in [2] in the following ways:
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• It does not assume normalization of the columns in D
(and thus it is more general);

• It relies on a different (weaker) feature of the matrixD
– a one-sided coherence measure; and

• The objective function is more general than the �1-norm
used in [2]. In fact, it is similar to the one proposed
by Gribonval and Nielsen in [5], but due to the above
changes, the analysis is rather different.

The results presented in this section form the grounds for the
main result of this paper - the analysis of non-negative linear
systems, as discussed in Section 3.

2.1. The One-Sided Coherence and Its Use

For an arbitrary n × k matrix D with columns di we de ne
its one-sided coherence as

ρ(D) = max
i,j;j �=i

|dT
i dj |

‖di‖2
2

. (2)

De ning the Gram matrixG = DT D, its elements satisfy
|Gij |
Gii

≤ ρ(D) ∀i, j �= i. (3)

This measure tends to behave like 1/
√

n for randommatrices,
very much like the regularmutual-coherence as de ned in [2].

Lemma 1 Any vector δ from the null-space ofD satis es

‖δ‖∞ ≤ tD‖δ‖1, (4)

where we denote tD = ρ(D)
1+ρ(D) .

Proof: Multiplying the null-space conditionDδ = 0 byDT ,
and using G = DT D, we get Gδ = 0. The i-th row of this
equation,

Giiδi +
∑
j �=i

Gijδj = 0, 1 ≤ i ≤ k, (5)

gives us

δi = −
∑
j �=i

Gij

Gii
δj , 1 ≤ i ≤ k. (6)

Taking absolute value of both sides, we obtain

|δi| =

∣∣∣∣∣∣
∑
j �=i

Gij

Gii
δj

∣∣∣∣∣∣ ≤
∑
j �=i

∣∣∣∣Gij

Gii

∣∣∣∣ |δj | ≤ ρ(D)
∑
j �=i

|δj |, (7)

where the last inequality is due to (3). Adding a term ρ(D)|δi|
to both sides, we get

(1 + ρ(D))|δi| ≤ ρ(D)‖δ‖1, 1 ≤ i ≤ k, (8)

implying

|δi| ≤ ρ(D)
1 + ρ(D)

‖δ‖1 = tD‖δ‖1, 1 ≤ i ≤ k. (9)

Thus, ‖δ‖∞ ≤ tD‖δ‖1, as the Lemma claims. �

2.2. Sparsity Guarantees Unique Global Optimality

In the following analysis we shall use a non-trivial (i.e., non-
zero) concave and increasing semi-monotonic scalar function
ϕ : R+ → R. Concavity implies that ∀ 0 ≤ t1 < t2, the
line stretched between the points (t1, ϕ(t1)) and (t2, ϕ(t2))
is below the function for x ∈ [t1, t2], and above it otherwise,
i.e.,

ϕ(t2) − ϕ(t1)
t2 − t1

(x − t1) + ϕ(t1) :
{ ≥ ϕ(x) for x /∈ [t1, t2]

≤ ϕ(x) for x ∈ [t1, t2]
.

The monotonicity means that ∀ 0 ≤ t1 < t2 we have that
ϕ(t2) ≥ ϕ(t1).

Theorem 1 Consider the following optimization problem

min
z

k∑
i=1

ϕ(|zi|) subject to Dz = b (10)

with a scalar function ϕ as de ned above. A feasible solution
z̄ (i.e. Dz̄ = b) is a unique global optimum of (10) if ‖z̄‖0 <

1
2tD
.

Proof: Adding a constant to the objective function does not
change the solution. Therefore, without loss of generality, we
shall assume hereafter that ϕ(0) = 0. We intend to show that
under the conditions of the theorem, any feasible non-zero
deviation vector δ ∈ R

k of z̄ (i.e. z̄ + δ) necessarily leads to
an increase in the objective function, namely

k∑
i=1

ϕ(|z̄i + δi|) >

k∑
i=1

ϕ(|z̄i|). (11)

Feasibility of the deviation vector means D(z̄ + δ) = b, im-
plyingDδ = 0. Thus, by Lemma 1 we can state:

|δi| ≤ tD‖δ‖1 ≡ δtol, 1 ≤ i ≤ k. (12)

Among all vectors δ of xed total amplitude satisfying
‖δ‖1 = δtol/tD satisfying inequalities (12), we shall try to
compose one that reduces the objective function. For this,
we separate the summation of the objective function into two
parts – the on-support elements (i.e. those with |z̄i| > 0), and
the off-support ones (where z̄i = 0). We denote the support
of z̄ as Γ and write

k∑
i=1

ϕ(|z̄i + δi|) =
∑
i∈Γ

ϕ(|z̄i + δi|) +
∑
i/∈Γ

ϕ(|δi|). (13)

We consider rst the on-support term. Taking into account
monotonicity and concavity of ϕ(·), a maximal decrease of
the objective function would be possible for the choice

δi =
{ −δtol · sign(z̄i) |z̄i| ≥ δtol−z̄i 0 < |z̄i| < δtol

. (14)
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For this assignment, the descent in the objective function is
given by

EΓ =
∑
i∈Γ

ϕ(|z̄i|) −
∑
i∈Γ

ϕ(|z̄i + δi|) (15)

=
∑
i∈Γ

ϕ(|z̄i|) −
∑
i∈Γ

ϕ(|z̄i| − δi)

=
∑
i∈Γ

ϕ(|z̄i|) −
∑
i∈Γ

ϕ
(
max{|z̄i| − δtol, 0}

)

≤ |Γ| · ϕ(δtol).

The last inequality is a direct consequence of the zero-bias
(ϕ(0) = 0), monotonicity, and the concavity of the function
ϕ(·).
Turning to the off-support term in Equation (13), any as-

signment of δi �= 0 implies an ascent. Of the original devi-
ation vector δ, we are left with a total amplitude of at least
‖δ‖1 − |Γ| · δtol = ‖δ‖1 · (1 − tD|Γ|), to be assigned to the
off-support elements. Again, due to the concavity of ϕ(·),
this remaining energy leads to the smallest possible ascent if
the assignment chosen is δtol to as few as possible elements.
Thus, the obtained ascent becomes

EΓ̄ =
‖δ‖1 − |Γ| · δtol

δtol
· ϕ(δtol) =

1 − tD|Γ|
tD|Γ| · ϕ(δtol). (16)

In order for z̄ to be a unique global minimizer of the prob-
lem posed in Equation (10), the change of the objective func-
tion should be positive – i.e., EΓ < EΓ̄, implying

1 − tD|Γ|
tD|Γ| · ϕ(δtol) > |Γ| · ϕ(δtol). (17)

which is always satis ed if |Γ| ≡ ‖z̄‖0 < 1
2tD
, as claimed. �

3. NON-NEGATIVE SYSTEMS OF EQUATIONS

We now turn to the main result of this paper, showing that if a
linear system with non-negativity constraint has a suf ciently
sparse solution, then this solution is unique. Afterwards, we
show how to preconditioning of the linear system can be used
to strengthen this theorem.

3.1. Main Result

Suppose that we are given a system of linear of equations with
non-negativity constraints

Ax = b, x ≥ 0, (18)

with non-negative A ∈ R
n×k and b ∈ R

n. In order to sim-
plify the exposition, we re-scale the problem to have unit col-
umn sums of the coef cients. Let W be a diagonal matrix
with the entriesWjj =

∑
i Aij . We assume that there are no

zero columns of in A, and thusW is invertible. The equiva-
lent system is

AW−1Wx = b, x ≥ 0. (19)

Denoting D ≡ AW−1 and z ≡ Wx, we get the normalized
system with

∑
i Dij = 1:

Dz = b, z ≥ 0. (20)

Denote 1n a column vector of n ones. Multiplying the last
equation with 1T

n , and using the fact that 1T
nD = 1T

k , we
obtain 1T

k z = 1T
nb = c, where c denotes the sum of the

entries in b.

Theorem 2 Suppose that we are given a system of linear equa-
tions with non-negativity constraints Dz = b, z ≥ 0, such
that all its solutions satisfy 1T z = c, where c is some con-
stant. If a vector z̄ is a sparse solution of this system with
‖z̄‖0 < 1

2tD
, then it is a unique solution of this problem.

Proof: Taking into account non-negativity of z, we can rewrite
the condition 1T z = c differently, as

‖z‖1 = c. (21)

The vector z̄ is a sparse (with less than 1/2tD non-zeros)
feasible solution of the linear programming problem

min
z

‖z‖1 subject to Dz = b. (22)

Notice that we do not specify the constraint 1T
k z = c because

any feasible solution of this problem must satisfy this condi-
tion anyhow. Also, we do not add a non-negativity constraint
– the problem is de ned as described above, and we simply
observe that z̄ is a feasible solution.
By Theorem 1, the vector z̄ is necessarily a unique global

minimizer of (22), i.e. any other feasible vector z : Dz =
b has a larger value of ‖z‖1; hence, being non-negative, it
cannot satisfy 1T z = c, and therefore it can not be a solution
ofDz = b, z ≥ 0. �
Before leaving this sub-section, we add the following two

comments:

• Here is a brief discussion to get more intuition on the
above theorem. Assume that a very sparse vector z̄ has
been found to be a feasible solution ofDz = b, z ≥ 0.
At least locally, if we aim to nd other feasible solu-
tions, we must use a deviation vector that lies in the
null-space of D, i.e., Dδ = 0. Positivity of the al-
ternative solution z̄ + δ forces us to require that at the
off-support of z̄, all entries of δ are non-negative. Thus,
the above theorem is parallel to the claim that such con-
strained vector is necessarily the trivial zero one.
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• We started the discussion in this section by requiring
that A is non-negative. The only place that used this
property is the normalization by W in Equation (19),
requiring thatW is invertible. Thus, any matrixA that
leads to an invertible positive weight matrixW is ade-
quate for our analysis.

3.2. Better Bounds via Preconditioning

The problem (10) can be rewritten in an equivalent form

min
z

∑
i

ϕ(|zi|) subject to PDz = Pb, (23)

where the “preconditioner” matrix P is any invertible n × n
matrix. Therefore the statement of the Theorem 1 remains
valid if we change ρ(D) and tD by ρ(PD) and tPD. This
gives us a useful degree of freedom in the analysis of problem
(10): In order to relax the requirement on the number of non-
zeros, one can try to nd such P that reduces ρ(PD). The
same is valid for problem posed in (20).
In the case of positive matrix D, an ef cient precondi-

tioning can be obtained just by subtracting the mean of each
column di from its entries:

Pdi = di −mean(di)1n =
(
I − 1

n
E

)
di, (24)

where E is n × n matrix of ones and I is the identity matrix
of the same size. Such preconditioner typically reduces cor-
relation between columns. For example, when the columns
are normalized,

∑
k dkl = 1,

(Pdi)T (Pdj) = di
T

(
I − 1

n
E

)
di = dT

i dj − 1
n

.

This usually leads to a smaller coherence constant ρ(PD).
Note that the matrix (I − 1

nE) is singular (and thus non-
invertible); therefore we use (I− 1−ε

n E) instead, with ε being
a small positive constant 0 < ε << 1.
We should note again that this preconditioning does not

change the solution of the original linear system; it just im-
proves our worst-case forecast of uniqueness versus sparsity.
On the other hand, as shown in [1], it improves signi cantly
the behavior of the orthogonal matching pursuit algorithm [4],
targeting the above problem.

4. CONCLUSIONS

Non-negative linear systems of equations come up often in
many applications in signal and image processing. Solving
such systems is usually done by adding conditions such as
minimal �2 length, maximal entropy, maximal sparsity, and
so on. In this work we have shown that if a sparse enough so-
lution exists, then it is the only one, implying that all the men-
tioned measures lead to the same solution. We also have pro-
posed an effective preconditioning for improving the chances

of such linear system to be handled well by greedy algo-
rithms. Future work on this front could consider ways to
optimize the preconditioning operator, suggest ways improve
the proposed bound by probabilistic means, and attempt to
exploit this uniqueness for compressed sensing and other ap-
plications.
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