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ABSTRACT
Consider a scenario where a distributed signal is sparse and is ac-
quired by various sensors that see different versions. Thus, we have
a set of sparse signals with both some common parts, and some vari-
ations. The question is how to acquire such signals and how to recon-
struct them perfectly (noiseless case) or approximately (noisy case).
We propose an extension of the annihilating lter method [3] to this
distributed scenario. We model the inter-relation between the sparse
signals by introducing three joint sparse models. For each model, we
propose sensing and reconstruction algorithms that reduce the num-
ber of measurements below the limit for the single sensor scenario
and results in power and bandwidth reduction in the system. In the
noiseless scenario, we are close to the minimum number of measure-
ments possible for the perfect reconstruction while by taking more
measurements, we introduce redundancy in the system to effectively
mitigate the noise. Simulation results justify the applicability of the
approach.

Index Terms— Compressed sensing, Sparse signals, Annihilat-
ing lter, Vandermonde matrix, Finite rate of innovation sampling

1. INTRODUCTION

Results on compressed sensing suggest that a relatively small set of
measurements taken as the inner products between a signal and ran-
dom measurement vectors can well represent a source that is sparse
in some xed basis [1], [2]. In [3], we proposed a sensing and re-
covery mechanism based on Vandermonde matrices and annihilat-
ing lters which is able to reconstruct k-sparse signals of dimension
n � k using just 2k measurements with reconstruction complexity
of O(k2). This idea is in connection with the work by Vetterli et al.
on sampling methods for signals with nite rate of innovation [4].

In this paper we extend our results in [3] to the distributed sens-
ing scenario discussed in [5]. We propose new sensing and recovery
mechanisms to solve the distributed sensing problem. Assume that
there are N sensors in an area measuring a phenomenon both in
space and time. A base station receives all the measurements and
runs an algorithm to jointly decode the signals of the sensors and re-
construct the phenomenon at the sensor positions, see Figure 1. The
assumption of the compressibility of the signals lets us assume that
each signal is sparse in some basis. Moreover, since the sensors pre-
sumably observe related phenomena, there should exist some inter-
relation between them. One should be able to make use of this inter-
relation to compress the whole ensemble of signals more ef ciently.
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Since the sensors take the measurements independently from each
other, there is no need for any communication between the sensors
except the routing of the measurements to the base station. In addi-
tion, the joint decoding which is much more power consuming than
sensing is done on the base station and sensors do not take part on
it at all. These two facts besides the compression of the joint sparse
signals by the distributed sensing scenario result in less power and
bandwidth consumption by the sensors which are valuable resources
in a low-power sensor network.

As an example, think of a microphone network recording a sound
eld at several points in space. The time series acquired at any of the
microphones might be sparsely represented in some Fourier basis. In
addition, the group of signals of all the microphones might show a
high correlation in the form of having some frequencies in common
because they listen to the same source.

Assume that the signals of the N sensors are k-sparse in some
orthonormal basis like Fourier or wavelet. If there exists no inter-
relation between these signals, the results in [3] suggest that one
needs 2kN measurements in total to fully represent the signals at
the base station. Following the same modeling approach as in [5],
in Section 2 we de ne three different Joint Sparse Models (JSM) to
model different types of connections between the signals. In Sec-
tion 3, we propose sensing and reconstruction algorithms which can
exploit the JSM model and reduce the number of measurements be-
low the limit for one sensor scenario. In the noisy case, we denoise
the measurements by the Cadzow’s algorithm as described in [6] and
[7] before applying the annihilating lter for reconstruction. The de-
noising algorithm will be adapted to the distributed scenario and will
bene t from joint sparse models to better mitigate the noise. This
will be followed by simulation results in Section 4 which evaluate
the performance of the algorithms numerically.

2. JOINT SPARSE MODELS

In this section, we de ne the notion of an ensemble of signals being
jointly sparse and model the inter-relation between the signals of the
sensors under three joint sparse models.

2.1. Sparse Common Support: JSM-1

In this model, all N signals share a common support set but with
different coef cients. The signal of sensor q is

xq = Ψθq, (1)
where the indexes of the non-zero components of θq are in a set Υ
of cardinality kc. The set Υ is the same for all the sensors.
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Fig. 1. Distributed sensing scenario. A collection of sensors mea-
sure a phenomenon and send their measurements to the base station
in which they are jointly decoded. There exists some inter-relation
between the signals.

A practical situation well-modeled by JSM-1 is where a set of
acoustic sensors acquire replicas of a set of Fourier-sparse signals
with different amplitudes and phases caused by attenuations and
multipath effects. In applications such as acoustic localization and
array processing algorithms, it is necessary to recover all of the sig-
nals of the sensors at the base station for further processing.

2.2. Sparse Common Support + Sparse Innovations: JSM-2

This model extends the JSM-1 so that there exists speci c sparse
innovation components in the signals. The support set and non-zero
coef cients of the innovation parts are different among the sensors.
Note that the common component is common only in the support set
and the coef cients are different from one sensor to the other.

Assume that the common support set has cardinality kc and
ki is the cardinality of the sparse innovation part. We assume the
same cardinality for the supports among the sensors. The signal of
sensor q can be represented as

xq = s
c
q + s

i
q = Ψ(θc

q + θ
i
q), (2)

where the vector θc
q has nonzero indexes in a set Υ ∈ {1, 2, . . . , n},

common between the sensors, in which the cardinality ofΥ is kc and
θi

q represents the innovation part coef cients vector with the nonzero
support cardinality ki.

A practical situation modeled by JSM-2 is where a group of sen-
sors measure a physical phenomenon such as humidity in a region.
There is a global effect of the physical quantity over the whole re-
gion which can be captured by the common part. The local physical
effect at the location of each sensor is re ected in the innovation part.

2.3. Full Common Component + Sparse Innovations: JSM-3

In the third joint sparse model, there is a non-sparse common signal
among the sensors plus a sparse innovation part which is speci c to
each one. Let the signal of sensor q be

xq = xc + s
i
q = xc + Ψθ

i
q, (3)

where θi
q represents the innovation part coef cients with the nonzero

support cardinality ki. The innovation part of each sensor can have
its speci c support set and coef cients different from the other sen-
sors.

One example of this sparsity model can be in the compression
of data such as video where each video frame is not sparse but the
differences between the video frames may be sparse in some sparsity
basis. It is possible to encode the frames independently and jointly
recover them at the decoder.

3. SENSING AND RECOVERY MECHANISMS

The sensing mechanism at the sensors is based on the single sensor
scenario in [3]. In order to take m measurements at each sensor,
the measurement matrix Φ which is the same at all the sensors is
represented as

Φm×n = Γm×n · Ψ̃n×n, (4)
where Γ is any Vandermonde matrix and the rows of Ψ̃ have the or-
thogonal (biorthogonal) relationship with the columns of the sparsity
inducing basis Ψ, Ψ̃Ψ = ΨΨ̃ = I . A good choice for the matrix Γ
ism consecutive rows of the n by n DFT matrix. For simplicity, one
can assume that Ψ = I so that the signals are sparse in the discrete
dirac basis. At sensor q, the measurement vector yq is computed as

yq = Φxq, (5)

and this measurement along with the measurements of the other sen-
sors are sent to the base station for joint recovery.

3.1. JSM-1 Recovery

3.1.1. Algorithm 1: Concentrated Common Support Recovery

In this strategy, one takes 2kc measurements at sensor 1 and kc mea-
surements from the remaining N − 1 sensors. The recovery mech-
anism in the base station consists of rst setting up an annihilating
lter of length kc of the form

H(z) =

kc∏
i=1

(1 − uiz
−1) =

kc∑
�=0

H[�]z−�
. (6)

Using the 2kc measurements taken at sensor 1, the annihilating l-
ter roots gives the common support set and the coef cients of the
signal of sensor 1. By using the true support, the nonzero coef -
cients of the signals of the remaining N − 1 sensors are computed
by solving a linear system of kc equations in kc unknowns. Since
there are kc unknown positions and Nkc unknown coef cients in
the JSM-1 model, the number of unknowns to be determined by the
measurements is kc(N + 1). The total number of measurements in
this strategy is 2kc + (N − 1)kc = kc(N + 1) which is equal to
the number of unknowns. On the other hand, the average number of
measurements per sensor is equal to kc(1 + 1

N
) which tends to kc

as the number of sensors increases. This situation is the the same
as the case where a genie gives the unknown common support set in
advance and the measurements are used to determine the unknown
coef cients. In the noisy case, we increase the number of measure-
ments at the sensors to add redundancy to the system. The iterative
Cadzow’s denoising algorithm as described in [6] is then used to de-
noise the measurements before applying the annihilating lter.

3.1.2. Algorithm 2: Distributed Common Support Recovery

In this strategy, one distributes the task of nding the common sup-
port set among kc sensors. Since kc measurements are needed in
each sensor for computing its unknown coef cients, there should be
at least kc + 1 measurements at the sensors which want to take part
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in the common index set estimation. Surprisingly, by taking kc + 1
measurements, it is possible to write one equation for the annihilat-
ing lter of length kc. The annihilating lter is the same for all the
signals because the signals share the same support; the same lter
will annihilate the signals of all the sensors.

Since one needs kc equations to nd the annihilating lter, there
should be at least kc sensors each giving kc + 1 measurements. The
measurements of the remaining N − kc sensors can be of size kc

just to compute their unknown coef cients. It is also possible to take
more than kc + 1 measurements at any sensor and thus reduce the
number of sensors which contribute to the common support recovery.
The total number of measurements is kc(N + 1) which is equal to
the number of unknowns, similar to strategy 1.

In the noisy setup, the measurements matrix should be of rank kc

and block Toeplitz where each block corresponds to one of the sen-
sors. The Cadzow’s denoising method nds the closest (in Frobenius
norm) measurements matrix with these properties to the noisy one.
After denoising, the annihilating lter will nd the unknown sup-
port set. The unknown coef cients are found by the method of least
squares.

3.2. JSM-2 Recovery

3.2.1. Emphasized Common Support Recovery

Although JSM-2 seems to be a simple extension of JSM-1, the re-
construction strategy is considerably different. Note that in JSM-2,
there is not any single annihilating lter with minimum length that
can annihilate all the signals of the sensors because of the speci c
innovative support set added to each signal by the innovation part.

Our approach in the recovery process is rst nding the common
support set by considering the innovative part as noise in the mea-
surements. Assume that one takes kc +2ki measurements at each of
the N sensors plus kc more measurements distributed among them.
In this case the total number of measurements is equal to the total
number of unknowns (which is equal to the sum of kc unknowns for
common positions andN(kc + 2ki) unknowns for the coef cients).
The recovery process starts by building the annihilating lter of de-
gree kc. It is possible to write a total of 2Nki + kc equations for the
annihilating lter. This is equivalent to an oversampling factor of
2Nki

kc
+ 2 which increases by having more sensors. We solve for the

common support set by looking for an annihilating lter of length
kc + 1 and hope that the oversampling factor just mentioned is able
to mitigate the effect of the innovation part. Then, by removing the
common part from the measurements of each sensor, one can easily
nd the innovation parts in the classical way.
The measurements matrix in the common support set estimation

phase should be of rank kc and block Toeplitz. In the innovation
estimation phase, after removing the effect of the common part, the
resulting measurements matrix for each sensor should be Toeplitz
and of rank ki. One can use the Cadzow’s method to denoise the
measurements in both phases before applying the annihilating lter.

3.3. JSM-3 Recovery

3.3.1. Algorithm 1: Common Signal Estimation Recovery

This recovery method tries to exploit the existence of a common part
in the signals to rst get a good estimate of the effect of the common
signal on the measurements of the sensors. Then by removing this
effect, the whole system goes back to the sparse scenario where one
can nd the innovation parts in the standard way.

Lets setup the strategy. Take the whole signal of sensor number 1
(which is of length n) and 2ki measurements from the rest and send
them all to the base station which results in n+2(N−1)ki measure-
ments in total. In the base station, the averaged measurement vector
ya is equal to

ya =
y1 + y2 + · · · + yN

N
(7)

= Φ(xc +
si
1 + si

2 + · · · + si
N

N
),

whereΦ is the measurement matrix of size 2ki×n. So by increasing
N , the number of sensors, one can assume that ya � Φxc; it is pos-
sible to nd the effect of the common part xc on the measurements
received from the sensors. The next step is to subtract ya from the
measurements received and nd the innovation part of each of the
sensors in the classical manner from the new measurements. Since
the whole signal x1 of sensor 1 is available, one can nd xc from the
whole signal received from sensor 1. Having access to the common
and innovative parts of the signals of the sensors, one can reconstruct
all the signals at the base station.

3.3.2. Algorithm 2: Differential Innovation Recovery

In this strategy, one takes more measurements compared to the al-
gorithm 1 but this enables the algorithm to recover the signals of
the sensors perfectly. One sends the whole signal of sensor 1 and
takes 4ki measurements from the rest. At the receiver, one builds
the equivalent measurement vector of sensor 1 of length 4ki from
its whole received signal with the same measurement matrix of the
other sensors. Build the new measurement vectors as

ŷ2 = y2 − y1 = Φ(si
2 − s

i
1)

ŷ3 = y3 − y1 = Φ(si
3 − s

i
1)

...
ŷN = yN − y1 = Φ(si

N − s
i
1).

(8)

Since the support of the difference of the innovation parts on the
right hand sides of these equations are at most 2ki, it is possible to
nd them using 4ki measurements. Once found, the signals of the
sensors from 2 to N can be found by adding them to the whole sig-
nal of sensor 1 (which is xc + si

1). In this process, the total number
of measurements is equal to n + 4(N − 1)ks which is more than
the number of unknowns approximately by a factor of 2 for large N

but still much smaller than the naive case which needs nN measure-
ments in total.

4. SIMULATION RESULTS

In this section we provide simulation results which demonstrates the
performance of the proposed sensing and recovery mechanisms in
three different joint sparse models discussed in the paper.

For the JSM-1 scenario, we consider signals of length n = 64
with kc = 4 nonzero coef cients and number of measurements equal
tom = 2kc = 8. The positions of the non-zero coef cients are cho-
sen uniformly random and the coef cients themselves are uniform
random numbers in [−1, 1]. The measurement matrix Φ is chosen
as eight consecutive rows of the DFT matrix of size 64. Figure 2
shows the normalized mean square error (MSE) of the reconstructed
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Fig. 2. JSM-1: Normalized MSE of the reconstructed signal vs. the
measurements SNR for n = 64, kc = 4,m = 8 and N ∈ {1, 2, 5}.
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Fig. 3. JSM-2: Probability of correct support reconstruction vs.
measurements SNR for n = 128, kc = 8, ki = 3, m = 33 and
N ∈ {1, 20}.

signal vs. the SNR of the measurements for three different number
of sensors, averaged over 500 trials. The nonzero coef cients are
found by the least squares method. Note that using a few sensors re-
sults in a big improvement in the reconstruction performance, even
if the number of measurements for each individual sensor is the min-
imum possible for perfect reconstruction in the noiseless case using
our annihilating lter based recovery.

In the JSM-2 setup, the sparse signals are of length n = 128, the
common support has dimension kc = 8 and we let ki = 3 for the
innovation part. The number of measurements per sensor is xed to
m = 33. The simulation result is shown in Figure 3. For each point
on the curves, we count the number of correct positions in 500 trials
and divide it by the total number of positions. The non-zero coef -
cients for the common part are uniform random numbers in [−1, 1]
while we let the coef cients for the innovation part to be uniform
random in [−αc

max, αc
max] where αc

max is the maximum absolute
value of the coef cients in the common part of each signal. This is
because we assume that the innovation part is not much stronger than
the common part. The result shows the gain we get by the joint re-
covery of signals at the base station. One can see that for JSM-2 and
at high SNR, the curve for the single sensor case is above the curve
for multiple sensors. The reason is that for multiple sensors and high
SNR values, the dominant noise in nding the common support set
is the innovation part and not the white noise added to the measure-
ments. This factor is not present in the single sensor case.
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Fig. 4. JSM-3: Probability of correct support reconstruction vs.
measurements SNR for n = 64, ki = 4 and,m = 24.

Finally consider the JSM-3 setup in which signals are of length
n = 64. The common signal is of dimension 64 generated as a vec-
tor of uniform random numbers in [−1, 1]. The innovation part of
the signals is of support length ki = 4 and their coef cients are
uniform in [−1, 1]. We choose number of measurements equal to
m = 24. In Figure 4 we plot the probability of correct support re-
construction for different noise levels added to the measurements.
Note that in algorithm 2, the number of sensors has no effect on the
recovery performance because the innovation support is not common
between the signals. If the support set is the same for the innovation
parts, we are back to the JSM-1 scenario and the algorithm 2 can
bene t from more sensors. Also note that there is a saturation effect
in algorithm 1 because for high SNR, the dominant noise is the part
coming from the common non-sparse part estimation and not from
the white noise added to the measurements.

5. REFERENCES

[1] D. L. Donoho, “Compressed sensing,” IEEE Transactions on
Information Theory, vol. 52, pp. 1289 – 1306, April 2006.

[2] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty prin-
ciples: exact signal reconstruction from highly incomplete fre-
quency information,” IEEE Transactions on Information The-
ory, vol. 52, pp. 489 – 509, February 2006.

[3] A. Hormati and M. Vetterli, “Annihilating lter based decoding
in the compressed sensing framework,” Wavelets XII, August
2007.

[4] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with
nite rate of innovation,” IEEE Transactions on Signal Process-
ing, vol. 50, pp. 1417–1428, June 2002.

[5] M.F. Duarte, S. Sarvotham, D. Baron, M.B. Wakin, and R.G.
Baraniuk, “Distributed compressed sensing of jointly sparse sig-
nals,” Conference record of thirty-ninth asilomar conference on
signals, systems and computers, vol. 24, pp. 1537 – 1541, Octo-
ber 2005.

[6] T. Blu, P. L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot,
“Sparse sampling of signal innovations: theory, algorithms and
performance bounds,” Submitted to IEEE Signal Processing
Magazine, May 2007.

[7] J. A. Cadzow, “Signal Enhancement-A composite property
mapping algorithm,” IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 36, pp. 49–62, January 1988.

5144


