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ABSTRACT

Compressive sensing aims to recover a sparse or compressible signal
from a small set of projections onto random vectors; conventional so-
lutions involve linear programming or greedy algorithms that can be
computationally expensive. Moreover, these recovery techniques are
generic and assume no particular structure in the signal aside from
sparsity. In this paper, we propose a new algorithm that enables
fast recovery of piecewise smooth signals, a large and useful class
of signals whose sparse wavelet expansions feature a distinct “con-
nected tree” structure. Our algorithm fuses recent results on iterative
reweighted �1-norm minimization with the wavelet Hidden Markov
Tree model. The resulting optimization-based solver outperforms
the standard compressive recovery algorithms as well as previously
proposed wavelet-based recovery algorithms. As a bonus, the al-
gorithm reduces the number of measurements necessary to achieve
low-distortion reconstruction.

Index Terms— Compressive sensing, wavelet transforms, data
compression, signal reconstruction, Hidden Markov Models.

1. INTRODUCTION
Compressive sensing (CS) is a new approach to simultaneous sens-
ing and compression that enables a potentially large reduction in
the sampling and computation costs at a sensor for signals having
a sparse representation in some basis. CS builds on the work of
Candès, Romberg, and Tao [1] and Donoho [2], who showed that
a signal having a sparse representation in one basis can be recon-
structed from a small set of projections onto a second, measurement
basis that is incoherent with the first.1 Random projections play a
central role as a universal measurement basis in the sense that they
are incoherent with any fixed basis with high probability. The CS
measurement process is nonadaptive, and the reconstruction process
is nonlinear. A variety of reconstruction algorithms have been pro-
posed [1–4].

These recovery algorithms are generic in the sense that they do
not exploit any particular structure in the signal besides its sparsity
in some basis. However, for some signals we have additional a priori
information that we should be able to exploit for improving perfor-
mance. For example, the piecewise smooth signals [5] that feature
prominently in a wide range of applications are not only sparse in
the wavelet domain, but also sport wavelet coefficients that cluster
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1Roughly speaking, incoherence means that no element of one basis has
a sparse representation in terms of the other basis.

around a connected subtree in the wavelet domain [6,7]. The goal of
this paper is to design a new CS signal recovery algorithm that takes
full advantage of this structure.

Previous work in this vein has developed tailored combinations
of measurement/reconstruction algorithms [8]. Additionally, mod-
ified greedy algorithms have been proposed [9, 10] to exploit the
parent-child wavelet coefficient relationships of piecewise smooth
signals. To date, these algorithms suffer from mixed, signal-
dependent performance. Furthermore, they do not exploit additional
structures, such as the magnitude decay of the wavelet coefficients
across scale.

In this paper, we endow a recently introduced iterative
reweighted �1-norm minimization algorithm [11] with a weighting
scheme based on the Hidden Markov Tree model (HMT) [6,7] to en-
force the additional tree-structured dependencies exhibited by piece-
wise smooth signals. The combination of these two approaches pro-
vides better reconstruction performance over standard algorithms;
this improvement is significant when a limited number of measure-
ments is available. The resulting scheme consists of a initial training
stage, in which the model parameters are estimated, followed by al-
ternating iterations of a reconstruction stage based on a linear and a
weight update stage based on the Viterbi algorithm.

This paper is organized as follows. Section 2 provides the nec-
essary background on CS, and Section 3 overviews work on CS for
wavelet-sparse signals. Section 4 reviews the HMT and its proper-
ties, and Section 5 introduces our new algorithm. Section 6 contains
experimental results, and Section 7 concludes.

2. COMPRESSIVE SENSING BACKGROUND

Let x ∈ R
N be a signal and let the matrixΨ := [ψ1, ψ2, . . . , ψN ] be

a basis for R
N . We say that x isK-sparse if it can be expressed as a

linear combination ofK vectors fromΨ; that is, x =
PK

i=1 θni
ψni

with K � N .2 A basis that provides a sparse representation for
a class of signals effectively captures the structure inherent in the
class; for example, the Fourier basis sparsifies smooth signals, and
wavelet bases sparsify piecewise smooth signals.

2.1. Incoherent measurements
Consider a signal x that isK-sparse inΨ. Consider also anM ×N
measurement matrixΦ,M � N , where the rows ofΦ are incoher-
ent with the columns of Ψ. For example, let Φ contain i.i.d. Gaus-
sian entries; with high probability, such a matrix is incoherent with
any fixed Ψ (universality). Compute the measurements y = Φx
and note that y ∈ R

M with M � N . The CS theory states that
there exists an overmeasuring factor c > 1 such that onlyM := cK
incoherent measurements y are required to reconstruct x with high

2Much of the CS theory extends gracefully to compressible signals, which
are well-approximated by sparse signals.
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probability [1, 2]. That is, just cK incoherent measurements encode
all of the salient information about theK-sparse signal x.

2.2. Reconstruction from incoherent projections

The overmeasuring factor c required depends on the (nonlinear) re-
construction algorithm. Under the sparsity assumption, one can
search for the sparsest signal that agrees with the obtained measure-
ments; by using the �0-norm ‖θ‖0 = #{n : θn �= 0}, the recon-
struction algorithm can be expressed as

bθ = arg min
θ

‖θ‖0 subject to ΦΨθ = y.

While this algorithm demands the smallest possible overmeasuring
factor (c = 2), its computational complexity renders it unfeasible.
Most of the existing literature on CS [1, 2, 4] has concentrated on
optimization-based methods for signal recovery, in particular �1-
norm minimization. The �1-norm approach seeks a set of sparse
coefficients bθ by solving the linear program

bθ = arg min
θ

‖θ‖1 subject to ΦΨθ = y; (1)

the reconstruction of sparse signals via �1-norm minimization is typ-
ically exact, provided that c = O(log(N/K)). Other algorithms,
including greedy algorithms [3], have also been proposed for CS re-
construction and require similar oversampling factors. However, all
of these algorithms are generic in the sense that, aside from sparsity,
they assume no particular structure within the signal coefficients.

2.3. Iterative reweighted �1-norm minimization

When the complexity of the signal is measured using the �1-norm,
individual signal coefficients are penalized according to their mag-
nitude; in contrast, when the �0-norm is used to measure the signal
complexity, the penalty for a nonzero coefficient is independent of
its magnitude. The effect of this disparity is reflected in the increase
of the oversampling factor between the two algorithms.

A small variation to the �1-norm penalty function has been sug-
gested to rectify the imbalance between the �0-norm and �1-norm
penalty functions [11]. The basic goal is to minimize a weighted
�1-norm penalty function ‖Wθ‖1, where W is a diagonal “weight-
ing” matrix with entriesWn,n approximately proportional to 1/|θn|.
This creates a penalty function that achieves higher magnitude-
independence. Since the true values of θn are unknown (indeed they
are sought), however, an iterative reweighted �1-norm minimization
(IRWL1) algorithm is suggested.

The algorithm starts with the solution to the unweighted �1-norm
minimization algorithm (1), which we name bθ(0). The algorithm
then proceeds iteratively: on iteration i > 0, it solves the optimiza-
tion problem

bθ(i) = arg min
θ

‖W (i)θ‖1 subject to ΦΨθ = y, (2)

whereW (i) is a diagonal reweighting matrix with entries

W (i)
n,n =

“˛̨̨bθ(i−1)
n

˛̨̨
+ ε

”−1

,

and ε is a small regularization constant. The algorithm can be ter-
minated when the change between consecutive solutions is smaller
than an established threshold or after a fixed number of iterations.
Each iteration of this algorithm can be posed as a linear program, for
which there exist efficient solvers.

3. CS FORWAVELET-SPARSE SIGNALS

A widely used sparse representation in signal and image process-
ing is the wavelet transform. Since piecewise polynomial signals
have sparse wavelet expansions [5] and since many real-world sig-
nals describe punctuated, piecewise smooth phenomena, it follows
that many real-world signals have sparse or compressible wavelet
expansions. However, the significant wavelet coefficients in general
do not occur in arbitrary positions. Instead they exhibit a character-
istic signal-dependent structure.

Without loss of generality, we focus on 1D signals, although
similar arguments apply for 2D and higher dimensional data in the
wavelet or curvelet domains. In a typical 1D wavelet transform, each
coefficient at scale j ∈ {1, . . . , J := log2(N)} describes a portion
of the signal of size O(2−j). With 2j−1 such coefficients at each
scale, a binary tree provides a natural organization for the coeffi-
cients. Each coefficient at scale j < log2(N) has 2 children at scale
j + 1, and each coefficient at scale j > 1 has one parent at scale
j − 1.

Due to the analysis properties of wavelets, coefficient values
tend to persist through scale. A large wavelet coefficient (in mag-
nitude) generally indicates the presence of a singularity inside its
support; a small wavelet coefficient generally indicates a smooth
region. Thanks to the nesting of child wavelets inside their par-
ents, edges in general manifest themselves in the wavelet domain as
chains of large coefficients propagating across scales in the wavelet
tree; we call this phenomenon the persistence property. Addition-
ally, wavelet coefficients also have exponentially decaying magni-
tudes at finer scales [5]. This causes the significant wavelet coeffi-
cients of piecewise smooth signals to concentrate within a connected
subtree of the wavelet binary tree.

This connected subtree structure was exploited by previous CS
reconstruction algorithms known as Tree Matching Pursuit (TMP)
and Tree Orthogonal Matching Pursuit (TOMP) [9, 10]. TMP and
TOMP are modifications to the standard greedy algorithms matching
pursuit and orthogonal matching pursuit, with the proviso that each
selection made by the greedy algorithm build upon a connected tree.
Such techniques enable faster algorithms due to the restriction in the
greedy search and lower reconstruction distortion due to the inherent
regularization.

However, for real-world piecewise smooth signals, the nonzero
coefficients generally do not form a perfectly connected subtree.
The reasons for this are twofold. First, since wavelets are band-
pass functions, wavelet coefficients oscillate between positive and
negative values around singularities. Second, due to the linearity of
the wavelet transform, two or more singularities in the signal may
cause destructive interference among coarse scale wavelet coeffi-
cients; that is, the persistence of the wavelets across scale is weaker
at coarser scales. Either of these factors may cause the wavelet co-
efficient corresponding to a discontinuity to be small yet have large
children, yielding a non-connected set of meaningful wavelet coef-
ficients. TMP and TOMP used heuristic rules to ameliorate the ef-
fect of this phenomenon. However, this considerably increases the
computational complexity, and the success of such heuristics varies
markedly between different signals in the proposed class.

In summary, we have identified several properties of wavelet ex-
pansions:

• large/small values of wavelet coefficients generally persist
across the scales of the wavelet tree;

• persistence becomes stronger as we move to finer scales; and
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• the magnitude of the wavelet coefficients decreases exponen-
tially as we move to finer scales.

We also note that the sparsity of the wavelet transform causes the
coefficients to have a peaky, non-Gaussian distribution.

4. HIDDEN MARKOV TREEMODELS

The properties identified in Section 3 induce a joint statistical struc-
ture among the wavelet coefficients that is far stronger than sim-
ple sparsity or the simple connectivity models used in the TMP and
TOMP algorithms. HMT [6] offers one modeling framework that
succinctly and accurately captures this joint structure. HMT mod-
eling has been used successfully to improve performance of denois-
ing, classification, and segmentation algorithms for wavelet-sparse
signals.

The HMT models the probability density function of each
wavelet as a Gaussian mixture density with a hidden binary state
that determines whether the coefficient is large or small. The per-
sistence across scale is captured by a tree-based Markov model that
correlates the states of parent and children coefficients. The follow-
ing properties are captured by the HMT.

Non-Gaussianity: Sparse coefficients can be modeled proba-
bilistically using a mixture of Gaussians: one component features a
large variance that models large nonzero coefficients and receives a
small weight (to encourage few such coefficients), while a second
component features a small variance that models small and zero-
valued coefficients and receives a large weight. We distinguish these
two components by associating to each wavelet coefficient θn an
unobserved hidden state Sn ∈ {S, L}; the value of Sn determines
which of the two components of the mixture model is used to gener-
ate θn. Thus we have

f(θn|Sn = S) = N (0, σ2
S,n),

f(θn|Sn = L) = N (0, σ2
L,n),

with σ2
L,n > σ2

S,n. To generate the mixture, we apply a probability
distribution to the available states: p(Sn = S) = pS

n and p(Sn =
L) = pL

n , with pS
n + pL

n = 1.
Persistence: The perpetuation of large and small coefficients

from parent to child is well-modeled by a Markov model that links
coefficient states. This induces a Markov tree where the state Sn of a
coefficient θn is affected only by the state SP(n) of its parent P(n).
The Markov model is then completely determined by the set of state
transition matrices for the different coefficients θn at wavelet scales
1 < j ≤ J :

An =

»
pS→S

n pS→L
n

pL→S
n pL→L

n

–
.

The persistence property implies that the values of pL→L
n and pS→S

n

are significantly larger than their complements. If we are provided
the hidden state probabilities for the wavelet coefficient in the coars-
est scale pS

1 and pL
1 , then the probability distribution for any hidden

state can be obtain recursively:
p(Sn = L) = pS

P(n)p
S→L
n + pL

P(n)p
L→L
n .

As posed, the HMT parameters include the probabilities for the hid-
den state {pS

1 , p
L
1 }, the state transition matrices An, and Gaussian

distribution variances {σ2
L,n, σ

2
S,n} for each of the wavelet coeffi-

cients θn. To simplify the model, the coefficient-dependent param-
eters are made equal for all coefficients within a scale; that is, the
new model has parameters Aj for 1 < j ≤ J and {σ2

L,j , σ
2
S,j} for

1 ≤ j ≤ J .

Magnitude decay: To enforce the decay of the coefficient mag-
nitudes across scale, the variances σ2

L,j and σ2
S,j are modeled so that

they decay exponentially as the scale becomes finer [7]:

σ2
L,j = CσL

2−jαL ,

σ2
S,j = CσS

2−jαS .

Since the wavelet coefficients that correspond to signal discontinu-
ities decay slower than those representing smooth regions, the model
sets αS ≥ αL.

Scale-dependent persistence: To capture the weaker persis-
tence present in the coarsest scales, the values of the state transition
matrices Aj follow a model that strengthens the persistence at finer
scales [7]. Additionally, the model must reflect that in general, any
large parent generally implies only one large child (that which is
aligned with the discontinuity). This implies that the probability that
Sn = L, given that Sp(n) = L, should be roughly 1/2. HMT ac-
counts for both factors by setting

pL→L
j =

1

2
+ CLL2−γLj , pL→S

j =
1

2
− CLL2−γLj

pS→S
j = 1 − CSS2−γSj , and pS→L

j = CSS2−γSj .

Estimation: We can obtain estimates of all parameters
Θ = {pS

1 , p
L
1 , αS, αL, CσL

, CσS
, γL, γS , CLL, CSS}

for a set of coefficients θ using maximum likelihood estimation:

ΘML = arg max
Θ

f(θ|Θ). (3)

The expectation-maximization (EM) algorithm in [6] efficiently per-
forms this estimation. Similarly, one can obtain the state probabil-
ities p(Sn = S|θ,Θ) using the Viterbi algorithm; the state prob-
abilities for a given coefficient will be dependent on the states and
coefficient values of all of its predecessors in the wavelet tree.

5. HMT-BASEDWEIGHTS FOR IRWL1

The IRWL1 algorithm described in Sec. 2.3 provides an opportunity
to implement flexible signal penalizations while retaining the favor-
able computational complexity of �1-norm minimizations.

We now pose a new weight rule for the IRWL1 algorithm that
integrates the HMT model to enforce the wavelet coefficient struc-
ture during CS reconstruction. Our weighting scheme, dubbed
HMT+IRWL1, employs the following weighting scheme:

W (i)
n,n =

“
p

“
Sn = L|bθ(i−1),Θ

”
+ δ

”−q

.

In words, for each wavelet coefficient in the current estimate we ob-
tain the probability that the coefficient’s hidden state is large; in the
next iteration, we apply to that coefficient a weight that is inversely
proportional to that probability. The parameter δ is a regularization
parameter for cases where p(Sn = L|bθ(i−1)) is very small, and the
exponent q is a parameter that regulates the strength of the penaliza-
tion for small coefficients. The goal of this weighting scheme is to
penalize coefficients with large magnitudes that have low likelihood
of being generated by a wavelet sparse signal; these coefficients are
often the largest contributors to the reconstruction error.

The first step of HMT+IRWL1 consists of an initial training
stage in which an EM algorithm solves (3) to estimate the values
of the parameters for a representative signal; additionally, the solu-
tion bθ(0) for the standard formulation (1) is obtained. Subsequently,
we proceed iteratively with two alternating steps: a weight update
step in which the Viterbi algorithm for state probability calculations
is executed for the previous solution bθ(i−1), and a reconstruction
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Fig. 1. Performance of IRWL1 algorithm, normalized by the per-
formance of �1-norm minimization. Since all values are less than 1,
IRWL1 and HMT+IRWL1 consistently outperforms �1-norm mini-
mization.

step in which the obtained weights are used in (2) to obtain an up-
dated solution bθ(i). The convergence criterion for this algorithm is
the same as for the IRWL1 algortihm.

Other probabilistic models for wavelet-sparse signals can also
be used in combination with the IRWL1 algorithm, including gen-
eralized Gaussian densities [12], Gaussian scales mixtures [13], and
hierarchical Dirichlet processes [14].

6. SIMULATIONS

We now compare the IRWL1 and HMT+IRWL1 algorithms. We
use piecewise-smooth signals of length N = 1024, with 5 ran-
domly placed discontinuities and cubic polynomial pieces with ran-
dom coefficients. Daubechies-4 wavelets are used to sparsify the
signals. Measurements are obtained using a matrix with i.i.d.
Gaussian entries. For values of M ranging from 102 to 512,
we test the �1-norm minimization and the IRWL1, TMP [9] and
HMT+IRWL1 algorithms. We fix the number of iterations for
IRWL1 and HMT+IRWL1 to 10. The parameters are set for best
performance to ε = 0.2, q = 0.1, and δ = 10−10. For eachM we
perform 100 simulations using different randomly generated signals
and measurement matrices.

Figure 1 shows the magnitude of the reconstruction error for
each of the algorithms, normalized by the error of the unweighted
�1-norm minimization reconstruction, as a function of the iteration
count. Figure 2 shows a reconstruction example. TMP performs
well for smaller numbers of measurementsM . IRWL1 consistently
outperforms �1 minimization. Our proposed HMT+IRWL1 algo-
rithm outperforms IRWL1 for most values ofM . For largeM near
N/2, HMT+IRWL1 becomes less efficient than IRWL1; we specu-
late that at this stage the recovered signal has roughly equal numbers
of large and small wavelet coefficients, which begins to violate the
HMT model. Figure 2 plots the various reconstructed signals for one
realization of the experiment, withM = 300.

7. CONCLUSIONS

This paper introduced a wavelet-tailored weighting scheme for the
iterative reweighted �1-norm minimization algorithm for compres-
sive sensing recovery. The HMT+IRWL1 scheme penalizes large
wavelet coefficients that are isolated in the wavelet tree, which are
unlikely to be generated by a wavelet-sparse signal. We employ
the Hidden Markov Tree model to determine the probabilities of
the wavelet coefficients being significant; the model provides in-
herent regularization by promoting several properties characteristic
of sparse wavelet decompositions. For piecewise smooth signals,

Original signal IRWL1, MSE = 1.55

TMP, MSE = 1.47 HMT+IRWL1, MSE = 0.08

Fig. 2. Example outputs for the reconstruction algorithms.

the HMT+IRWL1 scheme reduces the artifacts of the �1-norm mini-
mization reconstruction over fewer iterations than the standard itera-
tive reweighted �1 minimization algorithm. Our scheme can be used
as well in the extensions of the iterative reweighted �1-norm mini-
mization scheme, such as reconstruction from noisy measurements.
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