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ABSTRACT

There are various conditions on the CS matrix for unique and
stable recovery. These include universality, or spark, and
UUP. Furthermore, quantitative bounds on the stability de-
pend on related properties of the CS matrix. The construction
of good CS matrices – satisfying the various properties – is
key to successful practical applications of compressive sens-
ing. Unfortunately, verifying the satis ability of any of these
properties for a given CS matrix involves infeasible combina-
torial search. Our methods use �1 and semide nite relaxation
into a convex problem. Given a set of candidate CS matrices,
our approach provides tools for the selection of good CS ma-
trices with veri ed and quantitatively favorable performance.

Index Terms— Spark, Uniform Uncertainty Principle,
Basis Pursuit, Semide nite Programming, Compressive Sam-
pling

1. INTRODUCTION

Compressed sensing, or compressive sampling (CS) ad-
dresses under-determined inverse problems for sparse signals.
In the prototype problem, for x ∈ C

n with sparsity (number
of non-zero elements) ‖x‖0 � q � n and B ∈ C

p×n, we
want to reconstruct x from y = Bx. For some CS matrices
B and p > 2q, x (or, for p > q, almost all x) can be exactly
reconstructed, by nding the minimizer for ‖x‖0 subject to
Bx = y [1, 2]. Similar results hold for essentially sparse, or
compressible signals x, for p proportional to q log n. [3, 4].
Moreover, x can be also reconstructed by solving a convex
problem (basis pursuit) [3, 4]. Related results involve sparse
sampling of both nite and in nite-dimensional signals that
have unknown but sparse spectrum [1, 2, 5].

There are various conditions on the CS matrix B that
guarantee unique and stable recovery, or recovery using basis
pursuit. These include so-called universality [1, 2, 5], later
called spark [6] which is a full-rank condition on every q,
q � p column minor of B, and the more restrictive UUP
(uniform uncertainty principle), which implies a suf cient
condition for exact recovery using basis pursuit [7]. Bounds
on the stability of the solution with respect to measurement
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noise, and with respect to un-modeled small non-zero ele-
ments in x also depend on related properties of B [1, 8, 9].

The construction of good CS matrices – satisfying the var-
ious properties – is key to successful practical applications
of compressive sensing. Feng and Bresler [1] used exhaus-
tive search and random selection of sampling patterns gener-
ating CS matrices with low condition number in their work on
spectrum-blind sampling, and Candes et al [10] and Donoho
et al [3] showed that random CS matrices generated by the
uniform or Gaussian distribution satisfy the UUP with a high
probability. However, none of these properties can be guaran-
teed for any instance of a CS matrix generated at random. In
other words, we may face failure. This can have serious con-
sequences if the cost of reconstruction failure is very high.

Tao recently posted an open problem on constructing
good CS matrices [11]. The objective is either to devise a
deterministic construction of CS matrices that obey the UUP
or to reduce the computational complexity of determining
satis ability of the UUP for a given CS matrix. We propose
an ef cient (polynomial-time) scheme to verify the UUP.

In addition to the veri cation of the UUP, we consider the
quanti cation of the stability of the recovery problem for a
given B. Donoho et al [8] and Candes et al [9] derived bounds
on the error in �1-reconstruction. They used quantities whose
computation is NP-hard. Feng and Bresler [1] considered the
worst-case condition number over all possible sparse x in-
stances, which is also NP-hard to compute. Our methods use
�1-relaxation for the sparsity ‖x‖0, and additional relaxation
into a convex problem that is solved in polynomial time by
semide nite programming. Given a set of candidate CS ma-
trices generated at random, or using any other heuristic, our
approach provides tools for the selection of good CS matrices
with veri ed and quantitatively favorable performance.

2. PERFORMANCE GUARANTEES

Let B ∈ R
p×n be a given matrix. Consider a minor of B,

B•,J formed from a subset indexed by J ⊂ {1, · · · , n} of its
columns. We refer to the number of columns of B•,J , given
by |J |, the cardinality of J , as the size of minor B•,J . Let
supp(x) � {k ∈ {1, · · · , n} : xk �= 0} be the support set of
x. We can then rewrite the compressed sensing problem as:
nd x such that y = B•,supp(x)xsupp(x).
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2.1. Sparkη

Donoho et al [8] introduced Sparkη de ned by

P1 : Sparkη � max{q ∈ Z : min
|J|<q

σmin(B•,J) > η}
where σmin denotes the minimum singular value. Using �0

minimization, exact reconstruction can be achieved for al-
most all (Lesbegue) x satisfying ‖x‖0 < Spark0, and for
all x satisfying ‖x‖0 < Spark0/2 [2, 8]. Similar results ap-
ply in Spectrum Blind Sampling of continuous-time signals
[1]. When the measurement contains noise, the error in the �0

reconstruction for a given B is bounded in terms of Sparkη.

Theorem 2.1 [8] Given D and ε, set η = 2ε/D. If xi, i =
1, 2 are two approximate representations both obeying

‖y − Bxi‖2 � ε and ‖xi‖0 < Sparkη(B)/2,

then ‖x1 − x2‖2 � D.

Unfortunately, the computation of Sparkη is NP-hard. A
more relaxed bound [8] in terms of a quantity called coher-
ence is easily computed, but the bound is often too conserva-
tive to be useful in practice.

2.2. Worst-Case Condition Number

Let κ(B) = σmax(B)/σmin(B) denote the two-norm con-
dition number of matrix B, given by the ratio of its largest
to smallest singular values. The condition number κ(B•,J)
of any such minor will depend on the particular subset J of
columns selected. For a given upper bound q, q � p, on the
size of B•,J , we de ne κ(B; q) � max|J|�q κ(B•,J), the
worst-case condition number of all minors of size at most q.

Even when supp(x) is correctly recovered (e.g., using ba-
sis pursuit or OMP) in the presence of errors in y, these er-
rors can be ampli ed in the solution xsupp(x) by the condition
number of B•,supp(x), which can be as large as κ(B; q). In
fact, in spectrum blind sampling, the recovery of the spectral
support xsupp(x) is asymptotically (with increasing data) in-
sensitive to noise, so that the error in the recovery of the signal
of interest is in practice governed by κ(B; q) [1].

To study the distribution of κ(B; q) over random B, we
computed its histograms (Fig. 1) for iid Gaussian distributed
Bi,j ∼ N(0, 1). As these examples demonstrate, as q in-
creases, κ(B; q) can vary over a wider range between ran-
domly generated B, with a moderate probability of bad B,
but non-negligible fraction of very good B with low κ(B; q).
For q = 4, κ(B; q) reaches close to 50, but is only about 7
for some good B. Therefore, an ef cient selection strategy is
needed for a systematic evaluation of κ(B; q) over a suf cient
sample of candidate B to avoid the catastrophic B. It will in-
stead allow to select B close to the best, and provide an SNR
improvement of more than 16dB.

It can be shown (con rmed numerically in Fig. 1) that
κ(B; q) is an increasing function of q (intuitively, with more

(a) (b)
Fig. 1. Histogram of κ(B; q) for Gaussian random matrices.
n = 8. p = 6. (a) q = 2. (min 2.4, max 8.2) (b) q = 4. (min
6.8, max 43.9)

columns, there is increased opportunity for greater linear
dependence), so that κ(B; q) = max|J|=q κ(B•,J). There-
fore, for given B, we wish to compute the largest q such
that κ(B; q) < ξ, where ξ > 1 is a xed stability bound,
determined by the application. This will determine, for given
sensing matrix B, the maximum sparsity ‖x‖0 of vectors that
can be recovered with a guaranteed condition number less
than ξ. This largest q, denoted q∗, is obtained as the solution
to the following optimization problem

P2 :
q∗ = maxq∈Z+ q

subject to max|J|�q κ(B•,J) < ξ.

2.3. Uniform Uncertainty Property

The restricted isometry constant δq de ned by Candes and
Tao [7] can be expressed in the following form :

δq = min
δ

{δ : 1−δ � (σ(B•,J ))2 � 1+δ, ∀J, |J | � q}, (1)

and provides a suf cient condition for exact �1-reconstruction,
as well as an error bound for noisy measurements.

Theorem 2.2 [7] If δ2q + δ3q < 1, then �1-minimization ex-
actly recovers every x with ‖x‖0 � q from y = Bx.

Theorem 2.3 [9] If δ3q + 3δ4q < 2, for any x that obeys
‖y−Bx‖2 � ε and ‖x‖0 � q, the error in the reconstruction
x̂ achieved through �1-minimization is bounded by ‖x̂−x‖2 �
Cqε, where Cq depends only on δ4q.

In both cases, computation of δq, which is NP-hard, is neces-
sary in order to verify the satis ability for a given CS matrix.
In the next section, we provide a lower bound for r∗ de ned
by the following problem.

P3 :
r∗ = maxq∈Z+ q

subject to
∑�

k=1 ckδdkq < 1,
(2)

where ck > 0, dk ∈ Z are constants for k = 1, · · · , �. Using
this lower bound, we can verify the suf cient conditions for
unique and stable �1-recovery.
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3. EFFICIENT COMPUTATION OF THE BOUNDS

Unfortunately, because they require combinatorial search
over all subset J of {1, . . . n}, the computation of any of the
performance bounds (equivalently, the solution of any of the
problems P1 – P3) is NP-hard, and thus infeasible except
for small examples. We derive ef cient (polynomial-time)
algorithms to compute tight bounds for these performance
bounds, which thus provide computable performance guaran-
tees.

3.1. Sparkη

We derive an ef cient algorithm to compute a lower bound for
Sparkη using a sequence of problem reformulations. Setting
A = BT B, de ne the set

T α
L � {q ∈ Z : min

|J|�q
λmin(AJ,J ) > α}.

For any xed α, let q∗L(α) � max(T α
L ) denote the maxi-

mum element in the set T α
L . Then it can be easily veri ed

that Sparkη = q∗L(η2) + 1.

Proposition 3.1 An alternative way to compute q∗L(α) is
given by the following problem.

P1′ :
q∗L(α) = minx∈Rn ‖x‖0 − 1

subject to xT Ax � α
‖x‖ = 1

(3)

Proof (Outline) It can be shown that q∗L(α) = min{q − 1 :
min|J|�q λmin(AJ,J) � α}. The result then follows by the
Courant-Fisher variational characterization of λmin.

Problem P1′ is still NP hard. Consider its �1-relaxation,

P1′′ :
minx∈Rn ‖x‖2

1 − 1
subject to xT Ax � α

‖x‖ = 1
(4)

Since by the Cauchy-Schwartz inequality ‖x‖1 �
√‖x‖0

when ‖x‖ = 1, the minimum achieved in P1′′ lower bounds
that of P1′.

By reformulatingP1′′ as the following equivalent semidef-
inite programming (SDP) problem over the cone S+

n of
positive semi-de nite n × n real matrices, we replace the
nonconvex constraint of ‖x‖ = 1 by a linear constraint.

P1′′′ :

min
X∈S+

n

1T |X |1− 1

subject to tr(AX) � α
tr(X) = 1
rank(X) = 1

(5)

The last constraint is necessary because we derived P1′′′

through the relation X = xxT . Unlike the other linear con-
strains, the rank constraint is dif cult. We relax further by
dropping the rank constraint. Because the feasible set is again
increased, the achieved minimum lower bounds the actual
minimum of P1′, as stated below.

Theorem 3.2 Let s∗L(α) denote the minimum achieved in the
relaxed version of Problem P1′′′ without the rank constraint.
Then q∗L(α) � 	s∗L(α)
.

As a corollary, Sparkη � 	s∗L(η2)
 + 1.

3.2. Worst-Case Condition Number

With A = BT B and γ = ξ2, problem P2 can be rewritten as

P2′ :
maxq∈Z+ q
subject to max|J|�q κ(AJ,J ) < γ.

(6)

De ne the set

T β
U � {q ∈ Z : max

|J|�q
λmax(AJ,J ) < β}, (7)

and q∗U (β) � max(T β
U ). Our rst goal is to relate the solution

of P2′ to q∗L de ned in Section3.1 and to q∗U .

Lemma 3.3 Let A ∈ S+
n and γ � 1. Then κ(A) < γ if and

only if ∃α > 0, β > 0 such that λmin(A) > α, λmax(A) < β,
and β � γα.

Proposition 3.4 Let q∗(α, β) � min{q∗L(α), q∗U (β)}. Then
q∗ in P2 satis es q∗ � q∗(α, β), ∀α, β � γα.

Proof (Outline) It is easy to see that q∗(α, β) ∈ T α
L ∩T β

U . Let
T0 � {q : max|J|�q κ(AJ,J) < γ}. Then q∗ = max(T0).
q∗(α, β) ∈ T α

L ∩ T β
U and β � γα imply q∗(α, β) ∈ T0 by

Lemma 3.3.

In order to obtain the tightest lower bound, we max-
imize q∗(α, β) over ∀α, β � γα. Without changing the
maximum, we can restrict the maximization to the set F �
{(α, β) : λmin(A) � α � λmax(A)/γ, β = γα}. Let
q∗∗ � max(α,β)∈F q∗(α, β). Then it follows from Proposi-
tion 3.4 that q∗∗ � q∗.

Because the computation of q∗U (β) is still NP-hard, we
follow analogous steps to those used in the relaxation of Prob-
lem P1′ for the computation of q∗L(β), and instead solve

s∗U (β) = min
X∈S+

n

1T |X |1− 1

subject to tr(AX) � β
tr(X) = 1.

(8)

Then we obtain the lower bound 	s∗U (β)
 � q∗U (β). Combin-
ing the previous results we obtain the nal, ef ciently com-
putable lower bound.

Theorem 3.5 Let s∗∗ � max(α,β)∈F min{s∗L(α), s∗U (β)}.
Then 	s∗∗
 � q∗.
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3.3. Uniform Uncertainty Property

De ne V α
k � {q ∈ Z : ckδdkq < α} and let r∗k(α) �

max(V α
k ) for k = 1, · · · , �. Since δq is nondecreasing in

q, x ∈ V α
k if and only if x � max(V α

k ) for each k. Hence
r∗k(α) = min((V α

k )C) − 1 for each k.
Let

u∗(c) = minq∈Z+ q − 1
subject to δq � c.

Then r∗k(α) = 	u∗(α/ck)/dk
 for k = 1, · · · , �.

Proposition 3.6 δq � c if and only if min|J|�q λmin(AJ,J) �
1 − c or max|J|�q λmax(AJ,J ) � 1 + c.

It follows from Proposition 3.6 that u∗(c) = min{q∗L(1 −
c), q∗U (1 + c)}. Let t∗k(α) � min{s∗L(1 − α/ck), s∗U (1 +
α/ck)}/dk. Then 	t∗k(α)
 � r∗k(α) for k = 1, · · · , �.

Lemma 3.7 For {xk}�
k=1 ⊂ R,

∑�
k=1 xk < 1 if and only if

∃{αk}�
k=1 ⊂ R such that

∑�
k=1 αk � 1 and xk < αk for

k = 1, · · · , �.

Proposition 3.8 Let θ � [θ1, · · · , θ�]T ∈ R
� and de ne

t∗(θ) � mink t∗k(θk). Then r∗ in (2) satis es r∗ � 	t∗(θ)

for all θ such that 1T θ � 1.

Proof (Outline) Let V0 � {q ∈ Z : ∃θ ∈ R�,1T θ �
1, ckδdkq < θk, ∀k = 1, · · · , �}. Then r∗ = max(V0) from
Lemma 3.7. Since 1T θ � 1 implies ∩�

k=1V
θk

k ⊆ V0, t∗(θ) �
mink r∗k(θk) = max(∩�

k=1V
θk

k ) � max(V0).

For the tightest lower bound, we maximize t∗(θ) over ∀1T θ �
1. Without changing the maximum, we can restrict the maxi-
mization to the set G � {θ ∈ R� : 1T θ = 1 and δ1 � θk �
1 − (� − 1)δ1, ∀k = 1, · · · , �}. Let t∗∗ � maxθ∈G t∗(θ).
Then it follows from Proposition 3.8 that 	t∗∗
 � r∗.

Theorem 3.9 Let t∗∗ � max
θ∈G

min
k

t∗k(θk). Then 	t∗∗
 � r∗.

4. NUMERICAL RESULTS

To solve the SDP problems, we used the software package
YALMIP [12] to parse them into a standard form with sparse
matrices, and computed the optimum using SeDuMi [13].

We conducted numerical experiments with randomly gen-
erated matrices following the Gaussian distribution. We com-
pared the obtained lower bounds with the exact results ob-
tained by exhaustive search. Note that it is infeasible to use
exhaustive search when n and q are large. The cost of comput-

ing min|J|=q λmin(B•,J) is O
(
pq2

(
n
q

))
, becoming impracti-

cal on current desktop machines already for n > 30 and com-
parable p and q. To enable comparison of the bound with the
actual value, in this paper we restricted the numerical experi-
ments to small, tractable sizes.

q∗L \ �s∗∗L � 1 2 3
1 3 0 0
2 8 36 0
3 1 41 9
4 0 0 2

(a)

\ 1 2 3 4
2 1 5 0 0
3 1 19 16 0
4 0 9 43 1
5 0 0 2 3

(b)

Table 1. Joint histogram of (q∗L(η2), 	s∗L(η2)
) for Gaussian
random matrices (n = 16, p = 12). (a) η2 = 0.1 (b) η2 =
0.05.

q∗ \ �s∗∗� 1 2 3
1 46 0 0
2 27 26 0
3 0 1 0
4 0 0 0

(a)

\ 1 2 3
1 1 0 0
2 10 17 0
3 1 31 22
4 0 2 16

(b)

Table 2. Joint histogram of (q∗, 	s∗∗
) for Gaussian random
matrices (n = 8, p = 6). (a) ξ = 5 (b) ξ = 20.

Table. 1 compares q∗L(η2) and its lower bound 	s∗L(η2)

for 100 trial matrices B. The results show that our lower
bound for Sparkη − 1 coincides with with the actual value in
many cases, or underestimates it by a small number. Table. 2
compares the maximum q∗ satisfying the stability condition
on κ(B; q) at level ξ, with the lower bound on q∗, providing
similar favorable conclusions.

These results suggest that our lower bounds are tight, and
will provide both provable and practically effective perfor-
mance guarantees in compressed sensing.
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