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ABSTRACT

This paper discusses the application of a computational image sen-

sor, capable of performing separable 2-D transforms on images in

the analog domain, to compressive sensing. Instead of sensing and

transmitting raw pixel data, this image sensor first projects the im-

age onto a separable 2-D basis set. The inner products computed in

these projections are computed in the analog domain using a compu-

tational focal-plane and a computational analog vector-matrix mul-

tiplier. Since this operation is performed in the analog domain, com-

ponents such as the analog-to-digital converters can be taxed less

when a only subset of correlations are performed. Compressed sens-

ing theory prescribes the use of a pseudo-random, incomplete basis

set, allowing for sampling at less than the Nyquist rate. This can

reduce power consumption or increase frame rate.

Index Terms— imaging, image sensors, image sampling, intel-

legent sensors

1. HARDWARE FOR COMPRESSIVE IMAGE SENSING

The standard model for sensing and sampling information includes

the requirement of sampling at the Nyquist rate. This is necessary to

uniquely convey all the information in the signal being sensed. Of-

ten, preexisting knowledge can reduce the amount of data required to

uniquely capture the information in the signal. But, without a mech-

anism to capitalize on a priori knowledge in the sensing process, the

sensor and communication hardware must exhaustively sense, pro-

cess, and transmit information at the Nyquist rate. A compression

stage can ease the throughput requirements of communication chan-

nels, which is especially critical for wireless sensors, but the advan-

tages are only seen by the stages that follow the compression stage.

These advantages translate to lower power consumption and smaller

sizes.

More significant reductions in power and hardware complexity

can be achieved if data reduction is performed earlier in the sens-

ing chain. The reductions are a result of reducing the data through-

put across more stages in the sensing system. In the extreme case,

where data reduction is done at the front end of the system, all stages

receive these benefits. This translates to less total system communi-

cation and possibly less computation required at the sensing device.

Offloading computational complexity, like decoding, to the receiver

is often more efficient since the receiving system often has relaxed

power and area constraints, as is the case with distributed wireless

sensor networks utilizing a central processing node.
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Fig. 1: Compressive Sensing system design (a) Total data manipu-

lation and power is reduced in the chain from sensor to transmitter

by sampling less often instead of just compressing data in the digital

domain. (b) Separable transform image sensor hardware platform

with the capability to capture reduced data sets through projections

onto reconfigurable sets of basis functions.

Front end data reduction is exactly what compressive sensing

enables [1–4]. Compressive sensing exploits the knowledge that the

signal or image we are acquiring is sparse in a known transform do-

main (e.g. the wavelet domain). In other words, there are fewer de-

grees of freedom in the signal than the Nyquist rate requirement im-

plies, so fewer samples are needed to capture the signal. Presently, in

the majority of vision systems, the data throughput required through

most of the system is much larger than entropy rate of the signals

being processed. This suggests that fewer bits could be used to rep-

resent the signal in the system. As a result, compressive sensing is

particularly well-suited for image sensing applications, and the de-

velopment of hardware well-suited to compressive sensing is critical

to realizing the anticipated power and size savings or increased per-
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Fig. 2: Block matrix computation performed in the analog domain.

Illustrated here as an 8×8 block transform, both a computational

pixel array and an analog vector-matrix multiplier are used to per-

form signal projection before data is converted into the digital do-

main.

formance, such as the single-pixel camera discussed in [5].

While several technology options exist for image sensing ap-

plications, CMOS-based image sensors, also called imagers, share

essentially the same manufacturing processes as those used for stan-

dard VLSI implementations. Complex computational circuitry can

therefore be combined with the sensors and interface circuitry. This

paper discusses the capability of a computational image sensor to im-

plement compressive sensing operations. The structure implements

a computational architecture similar to that in [6]. The current image

sensor design was implemented on a 22.75 mm2 die in a standard

.35 μm CMOS process. The resolution is 256×256 with a pixel size

of 8 μm × 8 μm.

The fundamental capability of this image sensor can be de-

scribed as a matrix transform: Yσ = AT PσB, where A and B
are transformation matrices, Y is the output, P is the image, and

the subscript σ denotes the selected 16×16 pixel sub-region of

the image under transform. This separable transform operation is

demonstrated in hardware to be sufficient to perform compressive

sensing.

2. TRANSFORM IMAGE SENSOR

The separable transform image sensor uses a combination of focal-

plane processing performed directly in the pixel, and an on-die, ana-

log, computational block to perform computation before the analog-

to-digital conversion occurs.

The first computation is performed at the focal plane, in the pix-

els, using a computational sensor element shown in Fig. 1(b). It uses

a differential transistor pair to create a differential current output that

is proportional to a multiplication of the amount of light falling on

the photodiode and the differential voltage input. This operation is

represented in Fig. 2 as the element for the Pσ block. The electrical

current outputs from pixels in a column add together, obeying Kirch-

hoff’s current law. This aggregation results in a weighted summation

of the pixels in a column, with the weights being set by the voltages

entered into the left of the array. With a given set of voltage inputs

from a selected row of A, every column of the computational pixel

array computes its weighted summation in parallel. This parallel

computation is of key importance, reducing the speed requirements

of the individual computational elements.

The second computation is performed in an analog vector-matrix

multiplier (VMM) [7]. This VMM may be designed so that it accepts

input form all of the columns of the pixel array, or it can be designed

with multiplexing circuity to only accept a time-multiplexed subset

of the columns. This decision sets the support region for the com-

putation. The implementation used for these experiments uses the

time-multiplexed column option. The elements of the VMM use

analog floating-gate transistors to perform multiplication in the ana-

log domain. Each element takes the input from its column and mul-

tiplies it by a unique, reprogrammable coefficient. The result is an

electrical current that is contributed to a shared row output. Using

the same automatic current summation as the P matrix, a parallel

set of weighted summations occur, resulting in the second matrix

operation.

3. SENSING WITH A DECORRELATED BASIS SET

The transform image sensor gives us a large degree of flexibility in

the choice of basis used in the acquisition. Since our goal is to ac-

quire the image using as few basis functions as possible, one possible

choice would be the discrete cosine transform (DCT) basis set, Fig.

3 . The DCT is the basis used by the popular JPEG compression

standard. Its effectiveness stems from it tendency to compact the en-

ergy in the image to the low-frequency basis coefficients. The idea

is that since the high-frequency coefficients are small, they can be

ignored (not sampled) without too much loss.

The low-frequency DCT coefficients do capture the smooth re-

gions of the image using very few terms. However, the edges in

the image are diffused across all frequencies, making them harder

to represent using the DCT. If we look at a DCT approximation of

an image as we increase the number of terms, we get a “smooth”

approximation relatively quickly, but then it takes many terms to

capture the edge details, and often the approximations suffer from

“ringing” (Gibbs phenomena).

We can build up better approximations to the image using the

wavelet transform. While the smooth parts of the image are approxi-

mated just as well (if not better) as when using the DCT, the locality

of wavelets results in much milder edge effects. An extremely ac-

curate approximation of a medium-size image (one megapixel, say)

can be constructed from something like 3% of the wavelet coeffi-

cients. As such, the wavelet transform lies at the heart of nearly

every competitive image compression algorithm.

Translating the success of the wavelet transform in image com-

pression to sensing is not straightforward. The reason is that there is

a subtle difference in the nature of the DCT and wavelet models: the

same DCT coefficients (roughly) will be important for every image.

The DCT approximation is linear, consisting of a projection onto

a fixed subspace. Wavelet approximations, however, are nonlinear;

significant wavelet coefficients tend to cluster around edges in the

image, and hence their locations can change drastically from image

to image. While we would like to use our image sensor to sense a

small number of wavelet coefficients, we have no idea beforehand

which coefficients will be the ones to measure.

Recent work in the field of Compressive Sensing [1–4] suggests

a non-adaptive sensing strategy that fully exploits the approximation

power of the wavelet transform. Instead of trying to match the basis

set to the structure we are expecting in the image, we do the exact op-

posite: we use a basis consisting of (seemingly) random waveforms.
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Fig. 3: DCT and noiselet basis sets. The DCT 2D basis functions

are structured to correlate with different spatial frequencies in im-

ages. The inner products with the different DCT basis functions are

generally non-uniform, since most of the energy in images lies in

the low frequency components. The noiselets basis are decorrelated

with most image features and with reconstruction basis functions,

making each noiselet basis function statistically as significant as any

other.

Each basis coefficient that we measure is thus a random combination

of all the pixels in the image (or of pixels in the sub-block the image

sensor is concentrating on). From this series of random measure-

ments, we can untangle the important features in the image using

convex optimization.

In this paper, the imager samples the image in the noiselet do-

main [8]. Noiselets are an orthogonal basis of waveforms which

for our intents behave like random waveforms (see [3] for a more

detailed discussion). The noiselet transform is also fast, it requires

O(n log n) operations, which makes relatively large problems com-

putationally feasible.

4. COMPRESSIVE SENSING RECONSTRUCTION

PROCESS

To recover the image from the (relatively small) number of random

measurements, we need to do more than simply invert a transform.

Since the data is undersampled, there are many configurations of

pixels that could explain what we have measured. Very few of these,

however, have the structure (smooth regions separated by edges) we

expect from a real-world image.

There are several popular models to quantify this structure. One

model, motivated by the successes in image compression, is spar-

sity in the wavelet domain. Another model, and one which tends to

produce slightly better results in practice, is that typical images tend

to have small total variation compared to their energy. The total

variation of an n × n pixel image x is given by

TV(x) =
n∑

i,j=1

(
(xi+1,j − xi,j)

2 − (xi,j+1 − xi,j)
2
)1/2

, (1)

where xi,j is the pixel in the ith row and jth column.

The recovery procedure searches for the image with smallest to-

tal variation which explains the measured basis coefficients we have

observed. Viewing the image to be recovered as a vector in R
n2

, the

measurements process can be written compactly in matrix notation

as

y = Φx0, (2)
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Fig. 4: PSNR of reconstruction vs. percentage of used transform

coefficients. As expected, retaining a small number of DCT co-

efficients gives better performance than using a similar number of

noiselet transform coefficients since the signal is concentrated in the

low frequencies. However, as more DCT coefficients are used, the

SNR drops because the analog system contributes an equal noise

with each additional coefficient but less and less additional signal.

When more coefficients are used, the noiselet-based reconstruction

performs better. This is likely because the noiselets consist of only

−1 and 1, and thus can be scaled to maximally use the full analog

range. The Noiselet-based reconstruction also benefits from a recon-

struction algorithm that optimizes over the entire image.

where x0 ∈ R
n2

is the “true” image, the m × n2 matrix Φ is con-

structed by stacking the m measurement basis functions — each of

which is also a vector in R
n2

— on top of one another, and y is the

m vector containing the observations. Given y, we reconstruct the

image by solving the following optimization program:

min
x

TV(x) subject to ‖Φx − y‖2 ≤ ε. (3)

The program (3) balances two criteria: we want the recovered image

to have small total variation, but we also want it to explain what we

have observed (we should only consider x such that Φx ≈ y). The

parameter ε can be adjusted by the user to properly weight each of

these criteria.

The program (3) is convex, and is what is known as a second-

order cone program. The solution can be computed using standard

interior-point methods [9–11]. State-of-the-art solvers can recover

images with millions of pixels on a standard desktop computer.

5. RESULTS

The analog computational system described was used to sense im-

ages as projected onto programmed basis sets. The raw pixel-by-

pixel data is never transferred through the system. Instead, the two-

step computational process at the front end of the system projects the

image onto selected basis and outputs the inner products from this

process, which will be refereed to as the transform coefficients here-

after. The output of the image sensor IC is therefore the representa-

tion of the image in the selected vector space. Performing a subset

of the complete projections can either reduce power consumption or

increase frame-rate.

In the experiments, a complete set of transform coefficients were

collected, and the reduced collection was simulated by discarding

measured values. The nonlinear recovery algorithm discussed was

used to reconstruct the images captured with Noiselet measurement

functions. A pseudo-inverse was used to reconstruct images from
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Fig. 5: Reconstruction results using DCT and noiselet basis sets

with various compression levels. The image sensor measured 16×16

blocks of the image projected onto DCT and noiselet basis functions.

Subsets of the data were taken and used to reconstruct the shown im-

ages using a pseudo-inverse for incomplete DCT measurements and

a nonlinear-total-variance-minimization algorithm for the noiselets.

incomplete DCT measurements. Since the exact original image is

not available, reconstructed images corresponding to incomplete col-

lection were compared against denoised versions of images created

from complete coefficient collection.

At high levels of compression, retaining few transform coeffi-

cients, the DCT representation lead to better peak signal-to-noise ra-

tio (PSNR), Fig.4 and Fig.5. This is possible because the predefined

DCT coefficient removal process exploits the knowledge of where

energy compaction occurs in the DCT domain. In the case of the

noiselets, higher transform coefficient retention lead to better per-

formance, surpassing the DCT results in quality. It is expected that

every transform coefficient in the noiselet domain statistically con-

tributes the same signal and noise power to the resulting image as

any other coefficient. In the case of DCT transform coefficients, the

coefficients representing high spatial frequencies contribute the same

noise as the coefficients representing low frequencies, but they con-

tribute little signal power. In this case, where the reference images

were denoised and have little high frequency information overall,

the high frequency components contributed negatively to the SNR.

Additionally, the noise in the DCT images is higher than the noise-

lets because the DCT basis functions are smaller in magnitude than

those of the noiselets when implemented in this analog system. The

basis functions are constrained to a linear input range of the analog

computational elements. Since the noiselet functions consist of only

1’s and −1’s, they use the fullest signal range of the system, result-

ing in better signal to noise ratio. Moreover, the noiselet-based re-

construction benefits from a reconstruction algorithm that optimizes

even across block boundaries. The analysis of the system behavior

is ongoing.

6. CONCLUSION

In this paper, we demonstrated a computational sensor IC capable of

a unique and flexible set of sampling modes applicable to Compres-

sive Imaging. The capabilities of the IC to reconfigurably sense and

processes data in the analog domain provides a versatile platform for

compressive sensing operations. To demonstrate the platform, im-

ages were sensed through projections onto noiselet basis functions

that utilize a binary coefficient set, {1,−1}, and DCT basis func-

tions that use a range of coefficients. The recent work in the field of

Compressive Sensing enabled effective image reconstruction from

a subset of the measurements taken. The fundamental architecture

is flexible and extensible to adaptive, foveal imaging and adaptive

processing in combination with non-adaptive Compressive Sensing.
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