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ABSTRACT

This paper presents our recent development of the real-time speech
recognition component in the IBM English/Iraqi Arabic speech-to-
speech translation system for the DARPA Transtac project. We de-
scribe the details of the acoustic and language modeling that lead to
high recognition accuracy and noise robustness and give the perfor-
mance of the system on the evaluation sets of spontaneous conver-
sational speech. We also introduce the streaming decoding structure
and several speedup techniques that achieves best recognition accu-
racy at about 0.3�RT recognition speed.

Index Terms— large vocabulary spontaneous speech recogni-
tion, multilingual speech translation, discriminative training, noise
robustness, streaming mode decoding.

1. INTRODUCTION

IBM multilingual automatic speech-to-speech translator (MASTOR)
[1][2][3] is a real-time spontaneous speech translation system that
helps to remove the communication barriers between speakers who
do not share a common language. As a complicated system, it in-
tegrates components such as automatic speech recognition (ASR),
machine translation (MT) and speech synthesis to carry out two-
way conversation. In recent years, the MASTOR system has partic-
ipated in the DARPA Transtac project whose goal is to develop En-
glish/Iraqi Arabic translation systems that enable free-form commu-
nications in tactically relevant environments. The automatic speech
recognition component as the crucial part of the MASTOR system
is required to provide accurate, robust and low latency performance
to meet the deployment demand.

In this paper, we describe the details of the acoustic and lan-
guage modeling in both English and Iraqi Arabic ASR. We also ad-
dress the modeling treatment to deal with background military noise.
In order to deliver highly accurate recognition results in real time for
translation and synthesis components, we introduce a streaming de-
coding structure in the Viterbi decoder and other schemes to speedup
the recognition process.

The remainder of the paper is organized as follows. In Sections
2 and 3, we describe the acoustic modeling and language model-
ing respectively. In Section 4, the streaming decoding structure and
techniques for speedup are provided. The experimental results on
spontaneous speech evaluation sets are presented in Section 5 and
summary is given in Section 6.

2. ACOUSTICMODELING

The feature space of the acoustic model in MASTOR is created by
first splicing 9 frames of 24 dimensional Mel-frequency cepstrum

coefficients (MFCC) including energy and then projecting down to a
40 dimensional space by a combination of linear discriminant anal-
ysis (LDA) and maximum likelihood linear transformation (MLLT).
Utterance-based cepstral mean normalization is applied.

The baseline maximum likelihood (ML) acoustic models have
Gaussian mixture distribution with diagonal covariance for quin-
phones which are tied by a decision tree. The context-dependent
acoustic models are iteratively re-estimated for 2-3 times where the
LDA and MLLT are re-computed and the decision tree is rebuilt
based on refined alignments produced by the previous context-
dependent model.

English ASR employs gender dependent acoustic models where
the male model is trained on 280 hours speech data and female
model on 130 hours speech data. The male model has 4.5K quin-
phone states and 55K Gaussians while the female model has 4.0K
quinphone states and 50K Gaussians. Iraqi Arabic acoustic model
is gender independent which has 10K quinphone states and 100K
Gaussians trained on 600 hours Iraqi Arabic speech data. The En-
glish acoustic models use 54 phonemes and the Iraqi Arabic acoustic
model uses 33 graphemes. Both the phoneme and grapheme speech
units have 3 HMM states each.

2.1. Discriminative Training

On top of the ML baseline acoustic model, two discriminative train-
ing strategies are applied to improve performance, namely MPE
training in the back-end model domain and fMPE training in the
front-end feature domain.

MPE [4] is a discriminative training criterion that has achieved
superior performance over the traditional ML training. The objective
function is as shown in Eq.1
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where � are the HMM parameters, �� the feature sequence of the
�th utterance, � a probability scale and ���� the pre-scaled language
model probability. It is an average of the “raw phone accuracy” in
���� ��� of all possible sentences s, weighted by the sentence poste-
rior probability. MPE criterion is in spirit the same as other discrim-
inative objectives but the “raw phone accuracy” proves to be more
effective so far performance-wise.

fMPE [5] has been shown to yield significant improvements by
discriminatively training features. The mathematical treatment of
this approach can be described by Eq.2.

�	 � 		 �
 � �	 (2)
where the original feature 		 is transformed into a very high dimen-
sional space in �	. This is accomplished by computing likelihood of
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�� against a large number of Gaussians obtained from the acoustic
model and expanding it according to its left and right acoustic con-
text. The vector �� is then project down to the normal feature space
by the project matrix � and added to the original feature �� to pro-
duce the new feature ��. The project matrix � is trained based on
the MPE criterion in Eq.1.

Working together, fMPE and MPE can achieve about 20% to
30% relative improvement over the baseline ML acoustic model,
which will be shown in Section 5. For the acoustic models addressed
in this paper, 4 fMPE training iterations followed by another 4 MPE
training iterations are applied on the basis of the baseline ML model.

2.2. Multi-Style Training

Noise robustness is a persistent goal of the DARPA Transtac project
due to its tactical deployment feature. The translation system is re-
quired to deliver decent performance under typical military condi-
tions. Therefore, the ASR component has to be robust to the en-
vironment. To that end, multi-style training (MST) is adopted in
acoustic modeling . In this case, 15dB noisy data are generated by
adding humvee, tank and babble noise to the clean data. These three
types of noise are chosen to match the military deployment environ-
ments in the Transtac project. The MST acoustic models are trained
on the clean and 15dB noisy data. Accordingly, both English and
Iraqi Arabic MST models have more Gaussians than the previous
clean acoustic models. In English, the male and female MST mod-
els have 8K quinphone states and 90K Gaussians. In Iraqi Arabic,
the MST model has 10K quinphone states and 150K Gaussians. The
training procedure of the MST acoustic model is the same as pre-
vious clean model - 4 fMPE training iterations followed by 4 MPE
training iterations on the basis of the ML acoustic model.

It was observed from experiments and Transtac evaluations that
the speech signals recorded via a high quality microphone can be
actually very clean (close to 18-20 dB) even in a relatively noisy en-
vironments (e.g. field evaluation condition). Therefore, MST acous-
tic models will only be invoked in MASTOR when the SNR of the
recorded input signals is below certain threshold, which can be ac-
complished by environment detection.

2.3. Feature Adaptation

During recognition, online adaptation based on feature space maxi-
mum likelihood linear regression (fMLLR) [6] is used to adapt the
system to the acoustic features of the speaker. The adaptation is a
linear transformation in the MFCC feature space which has the form
in Eq. 3.

��� � � � �� � � (3)

where the transformation matrix � and bias � are estimated online
incrementally during the course the speaker uses the system. The
process is unsupervised and the statistics collected from all the pre-
vious utterances contribute to the estimation of the transformation of
the current utterance.

Compared to the maximum likelihood linear regression (MLLR)
[7] on adapting back-end acoustic model parameters, fMLLR offers
a computational advantage for rapid yet effective adaptation. From
the performance perspective, fMLLR yields about 10% additional
relative improvement on top of fMPE and MPE trained acoustic
model.

3. LANGUAGEMODELING

The Viterbi decoder in MASTOR operates on a static graph that is
based on finite state automata (FSA) [8]. The static graph incor-
porates acoustic decision tree, language model (LM) and dictionary
where the last two items significantly affect the size of the graph and
consequently the memory consumption during run-time. Therefore,
tradeoff has to be made among accuracy, memory and speed when
dealing with language modeling issues.

Both English and Iraqi Arabic ASRs use trigram in MASTOR.
The English ASR has a vocabulary of 32K words. The LMs are
generated by interpolating an in-domain LM trained on text corpus
with less than 15M words with a general domain LM that is trained
on a much larger text corpus. Both word-based and class-based LMs
have been investigated with several n-gram pruning strategies. Since
MASTOR can operate on multiple ASR engines as will be discussed
in Section 4, various LMs are adopted in MASTOR on the multiple
engines to cope with different situations. The final LMs have about
4M to 7M n-grams. The LMs in Iraqi Arabic ASR are trained on in-
domain data and have around 6M n-grams with different vocabulary
sizes (from 130K to 180K words) after pruning.

4. STREAMING DECODING STRUCTURE AND SPEEDUP

4.1. Streaming Decoding Structure

Fig.1 demonstrates the signal processing flow of MASTOR and
particularly its ASR decoding infrastructure. There are usually two
types of ASR decoding structure: utterance mode and streaming
mode. In utterance mode, the input speech is recognized only when
the whole utterance is recorded and sent to the ASR engine. There-
fore, the context information between various speech segments
may be exploited either implicitly or explicitly to achieve highest
recognition accuracy. However, this will surely lengthen the system
response time which is simply not acceptable in speech-to-speech
translation applications because the high ASR delay will greatly
reduce the message transfer rate of the multilingual conversation
and even break the conversation into pieces. In streaming mode,
the input speech is segmented into small (such as 250ms) chunks
and sent to the ASR engine chunk by chunk. The ASR decoder
generates the best recognition output based on both the current
speech chunk and the previous recognition hypothesis stored in a
Viterbi lattice. By reducing the size of each chunk, the approach can
achieve speech recognition at very low latency. However, because
of the lack of forward-looking in both front-end analysis and lattice
search, the resulting recognition accuracy is often sub-optimal. To
achieve highly accurate speech recognition with low latency, we
propose a new way of decoding in streaming mode. Different from
the traditional way of streaming mode recognition, we break the
recognition process into multiple layers. In particular, we define six
layers in the MASTOR system, i.e., MFCC, LDA, Cepstral Mean
Normalization, fMLLR, fMPE and Viterbi search. The streaming
mode is applied to each layer with a layer-dependent chunk size.
If the chunk size equals the utterance length, then the decoding in
that layer is equivalent to the utterance mode decoding. The smaller
the chunk size in a layer, the more likely its decoding performs in a
streaming mode. The size of chunks for each layer is optimized on a
dev set to minimize both recognition accuracy loss compared to the
utterance mode decoding and the corresponding recognition latency.
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4.2. Decoding Speedup

The proposed streaming mode ASR decoder is further optimized for
decoding speed. The computational overhead is minimized among
multiple decoding layers and multiple speech chunks. A new algo-
rithm called maximum probability improvement estimation (MPIE)
is proposed in fMPE computation that estimates posteriors of each
Gaussian distribution between current speech frame and previous
frames in order to reduce explicit computations of posteriors for a
large number of Gaussians. A cluster-based fast Gaussian mixture
computation scheme is applied to speedup likelihood computation
during Viterbi search in the lattice. Moreover, all the six layers of
streaming mode decoding are programed to support parallel comput-
ing, which may lead to up to 100% speedup on an Intel Duo-Core
based computer.

4.3. Multiple Engines

The MASTOR system is designed for high-performance speech-to-
speech translation even in very severe situations. Therefore, the
speech recognition accuracy should be robust to user gender, user
accents, noise backgrounds, and speech translation domains. On the
other hand, both acoustic models and language models work best if
they are trained for a matched group of people in a matched noise
background and within a matched speech translation domain. Not
surprisingly, however, these models usually perform worst if they
are used in non-matched conditions. It is hence an open challenge to
design highly accurate and also highly robust ASR engines. We pro-
posed and implemented a novel way to attack the above challenge
in the MASTOR system. Instead of fulfilling ASR task by a single
engine, we applied multiple ASR engines at the same time. Each
engine has its own acoustic model and language model. Some of
these models can be shared between various ASR engines to opti-
mize memory usage. During speech recognition, the input speech is
sent to the multiple engines simultaneously. The speech utterance is
then recognized by these ASR engines in parallel. Each engine then
returns its own best recognition hypothesis. The ASR hypothesis
from these multiple engines are further unified, sorted and displayed
as N-best ASR hypothesis to the users. A ROVER algorithm is de-
signed and implemented to generate the best ASR result based on
these N-best ASR hypothesis. Note that the approach of multiple
ASR engines will inevitably increase both computational complex-
ity and memory consumption. Since the Viterbi decoder applied in
our MASTOR system involves both high computational complexity
and memory consumption, the resulting ASR component may eas-
ily pass the limit of available system memory and acceptable ASR
responding time, even if only 2 ASR engines are adopted. Alter-
natively, we combine our best Viterbi decoder with multiple low-
footprint IBM ViaVoice engine using stack decoding , whose com-
putational cost and memory requirement are extremely low. This so-
lution achieved satisfactory results in both offline ASR experiments
and DARPA real-time evaluations.

5. PERFORMANCE

In this section, we will present the experimental results in terms of
recognition accuracy and speed. There are a number of test sets that
the ASR component is evaluated.

5.1. Recognition Accuracy

Table 1 shows the word error rate (WER) of English ASR with the
male (55K Gaussians) and female (50K Gaussians) acoustic models
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Fig. 1. Diagram of the signal processing flow of MASTOR with a
detailed description on the decoding infrastructure of ASR.

on three test sets that are collected in the DARPA Transtac project.
The three test sets all contain spontaneous speech in which “lab”
and “field” have Transtac January 2007 evaluation data recorded
during conversation in laboratory and field conditions respectively
and “offline” is composed of Transtac January 2007 evaluation data
recorded offline. The majority of the speakers in the three test sets
are male speakers. (There are only 5 female speakers in total who
are all in the “offline” test set. They are not evaluated in the exper-
iments.) Each set has about 350 utterances. The language model
used in the experiments is word-based interpolated LM discussed in
Section 3. English female is evaluated on another test set “spont”
which has 205 spontaneous utterances in total. Table 2 shows the
performance on Iraqi Arabic acoustic model (100K Gaussians). The
“lab”, “field” and “offline” test sets are the Iraqi Arabic counterpart
of those in English in Table 1.

male femaleTest Condition
lab field offline spont

ML 11.9 9.9 23.0 17.3
fMPE+MPE 7.9 6.8 19.3 14.7

fMPE+MPE+fMLLR 6.8 5.9 18.2 13.9

Table 1. Word error rate (WER) of English acoustic models on spon-
taneous speech test sets.

Test Condition lab field offline
ML 29.1 25.1 31.9

fMPE+MPE 24.8 21.6 28.8
fMPE+MPE+fMLLR 22.5 19.7 27.8

Table 2. Word error rate (WER) of Iraqi Arabic acoustic model on
spontaneous speech test sets.

From the tables, it can be observed that fMPE and MPE together
obtain about 20%-30% relative word error rate reduction compared
to the baseline ML model. Furthermore, fMLLR yields additional
relative 10% improvement on top of fMPE and MPE. This has
been the best reported performance in recognition accuracy for the
Transtac 2007 January evaluation.

Tables 3 and 4 give the performance of different LMs in English
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and Iraqi Arabic. Since the ASR component of MASTOR employs a
Viterbi decoder using a static graph which integrates dictionary, LM
and acoustic decision tree, the size of LM is an important factor as
it will greatly affect the size of the static graph. In Table 3, English
word-based and class-based interpolated LMs are compared. The
acoustic models are trained by fMPE and MPE and evaluated witout
fMLLR. LM2 is pruned more heavily than LM1. It can be observed
that word-based and class-based LMs obtain comparable results with
class-based LM being slightly better for most cases. Table 4 are re-
sults for Iraqi Arabic LMs which are trained with in-domain data.
The numbers in the parentheses are the vocabulary size after pruning
with different thresholds. The final LM is chosen for Transtac eval-
uation is built on 130K vocabulary based on the tradeoff between
performance and LM size.

male femaleTest Condition
lab field offline spont

word-based LM1 7.5 6.6 17.8 14.2
word-based LM2 7.5 6.8 18.4 14.4
class-based LM1 7.3 6.7 18.2 14.1
class-based LM2 7.4 6.5 18.4 14.1

Table 3. Word error rate (WER) of English language models on
spontaneous speech test sets.

Test Condition lab field offline
LM(180K) 22.0 19.8 21.6
LM(160K) 22.3 19.5 22.0
LM(130K) 22.3 19.4 22.0

Table 4. Word error rate (WER) of Iraqi Arabic language models on
spontaneous speech test sets.

The high ASR accuracy delivered by the recognition system also
helped to achieve the best end-to-end system performance of IBM
English-Iraqi Arabic translation system in Transtac July 2007 eval-
uation. IBM system has achieved the highest scores in both high
level concept transfer rate and low level concept transfer rate in the
evaluation.

5.2. Recognition Speed

Fig.2 illustrates the trend of improvement in recognition speed in
terms of real time factor as speedup schemes adding in. The ex-
periments are conducted on the English male “lab” test set using
the 55K Gaussian male acoustic model and word-based interpolated
language model. The real time factors are measured on IBM T60p
laptop with 2.33G Intel Duo-Core CPU. With carefully tuned decod-
ing parameters, both English and Iraqi Arabic can run at about the
same speed.

The speedup techniques as shown in the figure include paral-
lel computation (double threading), fast Gaussian computation, fast
search and fast feature extraction. Each of the technique contributes
about 20% relative improvement in speed and the trend is consistent
for both English and Iraqi Arabic. Overall, the speed is reduced from
original 1.4�RT to the final 0.3�RT.

6. SUMMARY

In this paper, we describe the details of the acoustic and language
modeling in both English and Iraqi Arabic ASR. We also address
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Fig. 2. Improvement of recognition speed in real time factor through
speedup techniques.

the modeling treatment to deal with background military noise. In
order to deliver recognition results in real time for translation and
synthesis components, we introduce a streaming decoding structure
in the Viterbi decoder and schemes to speedup the recognition pro-
cess which include parallel computation, fast Gaussian computation,
fast search and fast feature extraction.

7. ACKNOWLEDGEMENTS

This material is based upon work supported by the DARPA Transtac
project. We would like to thank H. Soltau and D. Povey for helpful
discussions on acoustic model training.

8. REFERENCES

[1] Y. Gao, B. Zhou, L. Gu, R. Sarikaya, H.-K. Kuo, A.-V.I. Rosti,
M. Afify, and W. Zhu, “IBM MASTOR: Multilingual automatic
speech-to-speech translator,” Proc. of ICASSP, pp. 1205–1208,
2006.

[2] B. Zhou, D. Dechelotte, and Y. Gao, “Two-way speech-to-
speech translation on handheld devices,” Proc. of ICSLP, pp.
1637–1640, 2004.

[3] L. Gu, Y. Gao, F. Liu, and M. Picheny, “Concept-based speech-
to-speech translation using maximum entropy models for statis-
tical natural concept generation,” IEEE Trans. on Audio, Speech
and Language Processing, vol. 14, no. 2, pp. 377–392, 2006.

[4] D. Povey and P.C. Woodland, “Minimum phone error and
i-smoothing for improved discriminative training,” Proc. of
ICASSP, pp. 105–108, 2002.

[5] D. Povey, B. Kingsbury, L. Mangu, G. Saon, H. Soltau, and
G. Zweig, “fMPE: Discriminatively trained features for speech
recognition,” Proc. of ICASSP, pp. 961–964, 2005.

[6] Y. Li, H. Erdogan, Y. Gao, and E. Marcheret, “Incremental on-
line feature space mllr adaptation for telephony speech recogni-
tion,” Proc. of ICSLP, pp. 1417–1420, 2002.

[7] C. J. Legetter and P. C. Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density hidden
markov models,” Computer Speech and Language, vol. 9, no. 2,
pp. 171–186, 1995.

[8] G. Saon, D. Povey, and G. Zweig, “Anatomy of an extremely
fast lvcsr decoder,” Proc. of Interspeech, pp. 549–552, 2005.

5124


