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ABSTRACT

Word Error Rate is a standard measure of quality for different

tasks such as Speech Recognition, OCR or Machine Trans-

lation. As such, it is important to compute it together with

confidence intervals. Previous works in the literature employ

Monte Carlo methods in order to compute those intervals. We

show how to compute them without simulations. We also

adapt a method that compares two systems over the same test

data so that it can be used without simulations.

Index Terms— error analysis, word error rate

1. INTRODUCTION

In many tasks the output of the system is a sentence (or a

collection of them), examples are Speech Recognition, OCR

or Machine Translation. The evaluation of those systems is

traditionally carried out by comparing the output with a ref-

erence. The Word Error Rate (WER) is one measure of the

difference between the output of the system and the reference.

It is measured as the number of edition operations (insertions,

deletions and substitutions) needed to transform the reference

in the output divided by the length of the reference.

In order to properly compare different systems, it is neces-

sary to provide not only the value of the WER but also a con-

fidence interval for it. In [1] the authors propose a method for

computing those intervals using bootstrapping, ie. repeatedly

sampling the test sentences in order to find relevant statis-

tics (Monte Carlo estimates). In [2] an approximation to the

standard error of the WER is provided, but it is not formally

derived and its validity is not proven.

Here we formally derive an estimate for the distribution

of the WER and show how to use it for computing confi-

dence intervals. We also show how to efficiently (ie. with-

out simulations) compute the probability that a system is an

improvement over another (the so called probability of im-

provement [1]).

Work partially supported by the Spanish Ministerio de Educación y

Ciencia (TIN2006-12767 and Ingenio 2010 project MIPRCV, CSD2007-

00018), the Generalitat Valenciana (GV06/302), and Bancaixa (P1 1B2006-

31).

2. FORMULATION OF THE PROBLEM

Following [1], we will assume that the evaluation has been

performed over s sentences. We will use ni for the length

of sentence i and ei for the number of errors in it. We can

represent the whole test as the sequence:

x = (n1, e1), . . . , (ns, es). (1)

The total average WER is then:

w =
∑

i ei∑
i ni

. (2)

The bootstrap procedure consists in repeatedly sampling x
with replacement in order to produce B different samples:

x∗
b = (n∗b

1 , e∗b
1 ), . . . , (n∗b

s , e∗b
s ), (3)

for b = 1, . . . , B. For these, we obtain the corresponding

WERs:

w∗
b =

∑
i e∗b

i∑
i n∗b

i

. (4)

These can be regarded as samples from a random variable1

W ∗ from which to obtain the confidence intervals.

Our problem then is to find a confidence interval for the

distribution of the random variable W ∗ defined as

W ∗ =
∑

i Ei∑
i Ni

, (5)

where the Ei and Ni are discrete random variables such that

the different (Ei, Ni) are iid2, but for any i the corresponding

Ei and Ni need not be iid.

Note that the difficulty of the problem lies in this lack of

independence. If Ei and Ni were independent, so would be

their sums and the distribution of W ∗ could be easily com-

puted. The key idea is to find a related expression that is a

sum of independent variables.

1Following standard conventions, we will use uppercase letters for ran-

dom variables and lowercase letters for concrete values of those variables.
2This is because they come from a sampling with replacement.
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3. DISTRIBUTION OF THE WER

First, consider the distribution function of W ∗:

P (W ∗ < x) = P

(∑
i Ei∑
i Ni

< x

)
. (6)

Since the lengths of the sentences are all positive, we get:

P (W ∗ < x) = P

(∑
i

(Ei − xNi) < 0

)
. (7)

Define

Zx
i = Ei − xNi. (8)

Remember that the pairs (Ei, Ni) are iid., therefore the Zx
i

are also iid. and the central limit theorem can be applied:

P (W ∗ < x) = P

(∑
i Zx

i − s E(Zx)√
s sd(Zx)

<
−√s E(Zx)

sd(Zx)

)

≈ Φ
(−√s E(Zx)

sd(Zx)

)
, (9)

where E represents the expected value, sd represents the stan-

dard deviation, and Φ is the distribution function of a variable

under a normal distribution with mean 0 and variance 1.

Finding the confidence interval now consists in fixing the

values of Φ and solving for x. For instance, for a 90% confi-

dence interval, we want the values that make Φ equal to 0.05
and 0.95, which are approximately −1.64 and 1.64, respec-

tively. Suppose that we have found that our limit is l (in the

previous example, l = −1.64 for the lower limit and l = 1.64
for the upper limit). Then we have:

−√s E(Zx)
sd(Zx)

= l. (10)

By the definition of Zx, we have:

E(Zx) = E(E)− xE(N), (11)

sd(Zx) =
√

var(E) + x2 var(N)− 2x cov(E,N), (12)

where var is the variance and cov the covariance. Therefore,

we rewrite (10) as:

−√s(E(E)− xE(N))√
var(E) + x2 var(N)− 2x cov(E,N)

= l. (13)

Squaring and rearranging we arrive to:

(l2 var(N)− s E2(N))x2

+ (2s E(E) E(N)− 2l2 cov(E,N))x

+ l2 var(E)− s E2(E) = 0,

(14)

which can be easily solved. Note that the squaring introduces

a spurious solution, but, if the two values of l that are of in-

terest have the same absolute value and opposite sign (as they

usually do), then the two solutions of (14) for any of them are

the endpoints of the confidence interval.

Interestingly, if we solve (13) for l = 0, we get the me-

dian, which is E(E)/ E(N), the empirical value of W . This

can be seen as a good reason for using it as estimate of the

value of the WER.

4. COMPUTATION OF CONFIDENCE INTERVALS

Using the results from the previous section, the procedure for

computing the confidence interval is:

• From the test sentences, compute E(E), E(N), E(E2),
E(N2) and E(EN).

• Compute var(E) and var(N) as E(E2) − E2(E) and

E(N2)− E2(N), respectively.

• Compute cov(E,N) as E(EN)− E(E) E(N).

• Find the value of l for the desired confidence level.

• Solve Equation (14), obtaining x1, x2. The confidence

interval is then (x1, x2).

Note that all these computations can be carried out in a

single pass over the test data as the expected values in the first

step are just averages.

5. SYSTEM COMPARISON

The confidence intervals found by the above method are ap-

propriate for comparing systems over different test sets. When

using a single test set for a direct comparison, other alterna-

tives exist. A measure for direct comparison of two systems

is proposed in [1]. This consists in evaluating the probability

that the difference of the WER for the systems is less than

zero. To this end, they define the difference in WER as

Δw := wA − wB =
∑

i(e
A
i − eB

i )∑
i ni

, (15)

where the two systems are A and B. Then, they propose to

use bootstrapping to estimate the probability that ΔW ∗ < 0.

We can proceed like in Section 3. First, we examine the

distribution function of ΔW ∗:

P (ΔW ∗ < 0) = P

(∑
i(E

A
i − EB

i )∑
i Ni

< 0
)

. (16)

Now, define ΔEi as EA
i − EB

i . Since the Ni are all positive,

we can leave out the denominator. Therefore

P (ΔW ∗ < 0) = P

(∑
i

ΔEi < 0

)
=

P

(∑
i ΔEi − s E(ΔE)√

s sd(ΔE)
<
−√s E(ΔE)

sd(ΔE)

)

≈ Φ
(−√s E(ΔE)

sd(ΔE)

)
. (17)
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This immediately suggests an algorithm:

• For each sentence compute the difference in errors be-

tween system A and B. Use them to find E(ΔE) and

sd(ΔE) =
√

E(ΔE2)− E2(ΔE).

• Use Φ(−√s E(ΔE)/ sd(ΔE)) as the estimate for the

probability of improvement.

6. EXPERIMENTS

We tested our proposal using the submissions for the shared

task of the Second Workshop on Statistical Machine Trans-

lation [3]. Note that although the WER is not the best mea-

sure for translation systems, it is often used for evaluating

them. The corresponding files are available on-line in the

page http://www.statmt.org/wmt07/.

We computed the WER and the confidence intervals for

two subtasks: Spanish to English and German to English over

the Europarl test, which consists in 2000 sentences (55 383

words). That makes the confidence intervals quite narrow.

The results can be seen in tables 1 and 2. The first col-

umn identifies the system, the second is the WER, the third is

the interval obtained by 1000 repetions of bootstrapping, the

fourth column corresponds to our method, finally, the fifth

column has been obtained by the formula in [2]. In all cases,

the intervals correspond to a 95% confidence level.

Taking the bootstrap columns as references, it is clear

that the proposed method gets very adjusted intervals. So

does the method from [2], although the intervals are slightly

wider. This is probably due to some assumption that is not

completely fulfilled. This effect is magnified in artificial sit-

uations. For instance, if the samples are 500 sentences of

length one with one error and other 500 sentences of length

ten without errors, the WER is 0.09, the bootstrap interval

is (0.06, 0.13), identical to the result of our method and the

interval from [2] is (0.03, 0.15).

Looking at the tables, we see a large degree of overlap,

so we can compute the probability of improvement. That is

reflected in tables 3 and 4 for the German to English task. In

each entry, there are two figures, the first is computed by boot-

strapping and the second using the method from section 5.

Again, the numbers are very close. We see that in the Spanish

to English task there are reasonable doubts about the relative

order of systems cmu-syntax and uedin on one side and upv

and nrc on the other. In the case of German to English, the

same happens with the relative position of the systems liu,

saar, cmu-uka and nrc.

7. OTHER MEASURES

Note that the derivation of the intervals depends only on the

fact that the measure can be expressed as the quotient of two

summations, each one over the same set of indexes. As such,

the derivation can be used for many different measures like

PER (position independent word error rate) [4] or TER (trans-

lation edit rate) [5]. It is only a matter of changing the mean-

ing of the Ei and Ni in the formulae above.

It would be interesting to find a similar algorithm for other

measures like BLEU [6], but it seems more difficult. The

main problem lies in the form of the score: a weighted geo-

metric average that does not lend itself to manipulations sim-

ilar to those we have done here.

8. CONCLUSIONS

A new method for computing confidence intervals for WER

has been presented. The only assumption for this method is

that the boostrapping procedure is valid, therefore it can be

applied in a wide range of situations. Its main advantage is

the ease of computation, a single pass over the data suffices,

without resorting to Monte Carlo simulations. Using the same

ideas, a method for computing the probability of improve-

ment is also simplified.
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System WER Bootstrap Proposed From [2]

cmu-uka 0.61 (0.60, 0.63) (0.60, 0.63) (0.59, 0.63)

uedin 0.62 (0.61, 0.63) (0.61, 0.63) (0.60, 0.64)

cmu-syntax 0.62 (0.61, 0.63) (0.61, 0.63) (0.60, 0.64)

upc 0.63 (0.61, 0.64) (0.62, 0.64) (0.61, 0.65)

nrc 0.63 (0.62, 0.64) (0.62, 0.64) (0.61, 0.65)

upv 0.63 (0.62, 0.65) (0.62, 0.65) (0.61, 0.65)

systran 0.67 (0.66, 0.68) (0.66, 0.68) (0.65, 0.69)

saar 0.71 (0.70, 0.72) (0.70, 0.72) (0.69, 0.73)

Table 1. Estimated confidence intervals for the Spanish to English task. First column is the empirical value of WER, the

following columns correspond to confidence intervals computed by bootstrapping, by our proposal and by a formula in [2].

Values in gray are equal to the bootstrap reference.

System WER Bootstrap Proposed From [2]

uedin 0.67 (0.66, 0.68) (0.66, 0.68) (0.66, 0.69)

upc 0.70 (0.69, 0.71) (0.69, 0.71) (0.68, 0.71)

systran 0.70 (0.69, 0.71) (0.69, 0.71) (0.69, 0.72)

liu 0.72 (0.71, 0.73) (0.71, 0.73) (0.70, 0.73)

saar 0.72 (0.71, 0.72) (0.71, 0.72) (0.71, 0.73)

cmu-uka 0.72 (0.71, 0.73) (0.71, 0.73) (0.70, 0.73)

nrc 0.72 (0.71, 0.73) (0.71, 0.73) (0.71, 0.73)

Table 2. Estimated confidence intervals for the German to English task. First column is the empirical value of WER, the

following columns correspond to confidence intervals computed by bootstrapping, by our proposal and by a formula in [2].

Values in gray are equal to the bootstrap reference.

cmu-uka uedin cmu-syntax upc nrc upv systran saar

cmu-uka — 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

uedin 0.00 0.00 — 0.71 0.72 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

cmu-syntax 0.00 0.00 0.28 0.28 — 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

upc 0.00 0.00 0.00 0.00 0.00 0.00 — 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

nrc 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 — 0.71 0.71 1.00 1.00 1.00 1.00

upv 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.29 — 1.00 1.00 1.00 1.00

systran 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 — 1.00 1.00

saar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 —

Table 3. Probability of improvement for the Spanish to English task. The values of entry (i, j) are the probabilities that system i
outperforms system j computed by bootstrapping and by our proposal. Gray values are either 0.00 or 1.00.

uedin upc systran liu saar cmu-uka nrc

uedin — 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

upc 0.00 0.00 — 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

systran 0.00 0.00 0.03 0.03 — 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

liu 0.00 0.00 0.00 0.00 0.00 0.00 — 0.51 0.50 0.84 0.84 0.93 0.93

saar 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 — 0.83 0.84 0.90 0.92

cmu-uka 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.16 0.17 0.16 — 0.67 0.67

nrc 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.07 0.08 0.08 0.33 0.33 —

Table 4. Probability of improvement for the German to English task. The values of entry (i, j) are the probabilities that system i
outperforms system j computed by bootstrapping and by our proposal. Gray values are either 0.00 or 1.00.
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