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ABSTRACT 
Language model adaptation aims to adapt a general model to a 
domain-specific model so that the adapted model can match the 
lexical information in test data. The minimum discrimination 
information (MDI) is a popular mechanism for language model 
adaptation through minimizing the Kullback-Leibler distance to 
the background model where the constraints found in adaptation 
data are satisfied. MDI adaptation with unigram constraints has 
been successfully applied for speech recognition owing to its 
computational efficiency. However, the unigram features only 
contain low-level information of adaptation articles which are too 
rough to attain precise adaptation performance. Accordingly, it is 
desirable to induce high-order features and explore delicate 
information for language model adaptation if the adaptation data is 
abundant. In this study, we focus on adaptively select the reliable 
features based on re-sampling and calculating the statistical 
confidence interval. We identify the reliable regions and build the 
inequality constraints for MDI adaptation. In this way, the reliable 
intervals can be used for adaptation so that interval estimation is 
achieved rather than point estimation. Also, the features can be 
selected automatically in the whole procedure. In the experiments, 
we carry out the proposed method for broadcast news transcription. 
We obtain significant improvement compared to conventional 
MDI adaptation with unigram features for different amount of 
adaptation data. 

Index Terms- Feature Selection, Confidence Interval, Minimum 
Discrimination Information, Language Model, Speech Recognition 

1. INTRODUCTION 
Language modeling plays a critical role in automatic speech 
recognition and many other applications. Traditionally, language 
models are estimated from a large corpus containing different 
domains. Usually, the test environment for speech recognition is 
changed by the speakers with their speaking styles and 
conversation topics, etc, which causes the environmental mismatch 
problems in acoustic models as well as language models. In this 
study, we focus on the issue of compensating domain mismatch 
through the language model adaptation [1]. However, it is difficult 
to collect sufficient in-domain articles in advance. There is only a 
limited amount of adaptation data available for adapting a general 
domain model to a specific domain. In [6][9], some language 
model adaptation methods have been established. One popular 
approach was to do model interpolation, where the background 
model was interpolated with the model trained on adaptation data 
using a fixed interpolation weight. Also, the minimum 
discrimination information (MDI) has been successfully employed 
in language model adaptation [6][12] and popularly known to be 
superior to model interpolation. MDI method started from the 

maximum entropy (ME) based language model [1]. MDI is more 
powerful than model interpolation since an adaptive weight is 
assigned for individual feature. Using MDI, the adapted model is 
consistent with the statistics extracted from the adaptation data. 
The Kullback-Leibler divergence is minimized in MDI procedure. 
When adaptation data is small, only unigram features are reliable 
to represent the statistics of adaptation documents. In [6], the 
constraints of unigram features were involved. In [13], the topic 
unigrams extracted by Latent Dirichlet Allocation was used for 
MDI adaptation. When adaptation data is increased, the higher-
order features, e.g. bigrams or trigrams, become reliable for MDI 
adaptation. In general, the lower-order features are reliable but 
rough for model adaptation. In contrast, the higher-order features 
are delicate but the sufficient adaptation data are required. Similar 
to acoustic model adaptation [4], there is a tradeoff between 
reliability and effectiveness with different size of adaptation data. 
Accordingly, how to properly balance and select suitable features 
for MDI adaptation is critical for speech recognition and 
understanding. Traditionally, the feature selection in ME language 
modeling was done following the likelihood gain [2]. This method 
selected good features in the same feature order. It was not suitable 
for the case of covering different orders of features because the 
high-order features always attain higher likelihood gain than the 
low-order features. The overtraining phenomenon happens and 
deteriorates the system performance. In this paper, we adopt the re-
sampling technique and calculate the confidence interval 
statistically to determine the reliable regions of linguistic features. 
These regions represent the reliable intervals that features can be 
extracted from the available adaptation data. Based on the 
inequalities in ME approach [10], we merge the regions and relax 
the constraints for MDI adaptation. Namely, we perform interval 
estimation for each linguistic feature rather than point estimation. 
The advantage of using inequality constraints is that we can 
remove the unreliable features and induce the salient features in 
MDI estimation procedure. In the experiments, we evaluate the 
proposed method for large vocabulary continuous speech 
recognition using different number of adaptation data. 

2. MDI ADAPTATION 
Let ),( whpB  denote the background language model of history h
and word w  trained from a large corpus in general domain and 

),( whpA  represent the target or the adapted model estimated from 
an adaptation corpus in new domain. Given features Fff ,,1

from adaptation data, we determine the expectation of if  with 
respect to the empirical distribution ),(~ whpA  by 

wh
iAip whfwhpfE

A
,

~ ),(),(~][ ,                     (1) 
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where )(if  is a binary-valued feature function. Also, using the 
conditional probabilities in language model, we can calculate the 
expectation with respect to the target conditional distribution 

)|( hwpA  by 

wh
iAAip whfhwphpfE

A
,

),()|()(~][ .                 (2) 

Thus, we specify the constraints by 
FifEfE ipip AA

,,1],[][ ~ .                    (3) 
Under these constraints, we minimize the Kullback-Leibler 
divergence (KLD) between )|( hwpA and )|( hwpB  [12] 

wh B

A
AABA hwp

hwp
hwphphwphwp

, )|(
)|(log)|()(~))|(),|((KLD .  (4) 

MDI procedure is implemented by introducing Lagrange 
multipliers and solving the constrained optimization through 
minimizing 

F

i
ipipiBA fEfEhwphwp
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Accordingly, we obtain MDI model which is expressed as a log-
linear or Gibbs distribution 

F

i
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with the normalization term 

w

F

i
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1
),(exp)|()( .              (7) 

MDI parameters },,{ 1 F  can be estimated by the generalized 
iterative scaling (GIS) or the improved iterative scaling (IIS) 
algorithm [2][5]. 

In MDI approach, feature functions are incorporated to extract 
the helpful information from adaptation data. When the amount of 
adaptation samples is small, one may assume that only unigram 
features [6] 

otherwise
if
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ww
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i
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can be reliably extracted. However, unigram features only 
represent simple lexical characteristics. It is desirable to exploit 
delicate features reflecting the properties of adaptation domain. 
For this consideration, we should develop a solution to reliable 
feature selection for language model adaptation in case of different 
amount of adaptation data. In [12], a cutoff threshold method was 
proposed to induce high-occurrence features. Here, we apply re-
sampling technique and hypothesis test principle for adaptive 
feature selection. The reliable regions of features are adopted in 
building inequality constraints for MDI adaptation. We can select 
features automatically in a reliable estimation procedure. 

3. RELIABLE SELECTION FOR MDI ADAPTATION 
Assuming that there exists a true in-domain n-gram distribution for 
target domain, this distribution should sufficiently represent the 
characteristics of domain knowledge. Given a set of in-domain 
training data, we adapt a general language model to a domain-
specific language model. When the amount of adaptation data is 
increased, the distribution of adaptation data tends to target in-
domain distribution and the feature extraction goes stable. 
However, we don’t know whether the observed data are located in 
a suitable region. Some instable features need to be pruned for 
reliable adaptation. In what follows, we address the solution to 

statistically analyze the reliability of features and adapt the 
language model to the target domain. We determine the reliable 
region for each feature by performing re-sampling and calculating 
the confidence intervals so as to attain interval estimation for each 
feature rather than point estimation. We define the inequality 
constraints using these regions for MDI adaptation. 
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Figure 1 Procedure of reliable feature selection for MDI adaptation 

3.1. Determination of reliable region  
Re-sampling technique has been successfully used to estimate 
robust mutual information for feature selection [7] as well as to 
construct random forest language models [14]. Here, we adopt the 
re-sampling technique to extract information for analyzing the 
reliability of features. Then, we calculate the confidence interval to 
identify the reliable region individually for each feature from 
adaptation data. The features in these regions are statistically 
stable. The reliable features are applied for language model 
adaptation. The whole procedure is shown in Figure 1. We use K-
fold re-sampling method which divides the adaptation data into K
subsets and build the distributions, ),( whpR

k Kk ~1 by using 
the data excluding subset k . Then, the empirical expectations are 
calculated K times based on different distributions. We compute 
the sample mean  ][~ ip fE R  and the sample variance 2

i .

According to the Central Limit Theorem, when the number of 
subsets is sufficient, the re-sampled expectation tends to be a 
Gaussian distribution with mean ][~ ip fE R  and variance 2

i . Under 

a significance level , we have 1  confidence to believe that 
the reliable expectation ][ˆ ip fE

A
 falls into the confidence interval 

K
zfEfE

K
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where 2/z  is the statistic value determined by referring a 
standard Gaussian distribution. Thus, confidence interval makes 
the probability of extracting reliable expectation based on sampled 
data satisfy the following condition 

1)][][][( 2/~ˆ2/~
K

zfEfE
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zfEp i
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i
ip R

A
R
A

.

(10)
The empirical expectation given adaptation data should satisfy the 
inequality in (9). In MDI, we strive to characterize the 
expectations as reliable as the empirical expectations. Namely, we 
calculate the model expectation by considering its reliable region 
or confidence interval. Therefore, we determine the lower bound 

iA  and the upper bound iB  for the inequality constraint 

i
i
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In this procedure, we use the re-sampled empirical distribution 

Kwhpwhp
K

k

R
k

R

1
),(~),(~  instead of the original empirical 

distribution ),(~ whp  for calculation of expectation function. 

3.2. Inequality constraints for MDI 
With the reliable region in (11), we establish the inequality 
constraints in MDI criterion which is consisted of a KLD term and 
two sets of constraints corresponding to the lower bound and the 
upper bound 
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MDI solution to the adapted language model is then given by 
F
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1
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with parameter set }~1,,{ Fiba ii . Based on the Karush-
Kuhn-Tucker (KKT) condition [11] the optimal parameters must 
satisfy the constraints of 0,0 ii ba  and 

.0][][
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GIS or IIS algorithm is applied to estimate MDI parameters. 
Because the lower and upper bound constraints can not be satisfied 
at the same time, one or both of the parameters ia  and ib  must be 
zero. Namely, there are three conditions for parameters ia  and ib :

1. 0,0 ii ba  (lower  bound is active), 
2. 0,0 ii ba  (upper bound is active), 
3. 0,0 ii ba  (inactive). 

In the first and the second cases, the feature if  is active. Only 
active features have influence on the adapted model. The inactive 
features in the third case are explicitly removed.  

Also, it is interesting to explore the relation between the 
inequalities of MDI and maximum likelihood (ML) methods. By 
substituting (13) into (12), the minimization of MDI criterion is 
equivalent to the maximization of ML criterion 
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which is composed of the log-likelihood of re-sampled adaptation 
data and the penalty term. The penalty is affected by the standard 
variance i , the number of subsets K  and the significant level 

. When i  is large, the expectation has a great variation and 
the corresponding feature if  is not stable so that the penalty is 
increased. Also, in case of a larger number K , the re-sampled 
estimation is robust so that the penalty can be decreased. Also, a 
larger K makes the Gaussian assumption of Central Limit Theorem 
more reasonable so that the confidence interval can be estimated 
more robustly. Therefore, it is meaningful that the inequalities in 
MDI can balance the tradeoff between the likelihood function and 
the model penalty for model adaptation. 

4. EXPERIMENTS 
In the experiments, the proposed algorithm was evaluated by the 
broadcast news database MATBN. We estimated the speaker-
independent HMM models using the benchmark Mandarin speech 
corpus TCC300, which was recorded using closed-talking 
microphone in office environments. Each Mandarin syllable was 
modeled by initial and final models using right context-dependent 
states with 32 mixture components at most. The initial and final 
models were specified by three and five states, respectively. 
Speech feature vector consisted of twelve Mel-frequency cepstral 
coefficients, one log-energy and their first derivation. The baseline 
HMM was adapted using MAP adaptation [8] with 500 sampled 
conversations in MATBN. The baseline trigram model was trained 
using the Academic Sinica CKIP balanced corpus and the CIRB 
corpus with web news stories [3]. There were totally forty-five 
million words. Our lexicon contained 32,909 Chinese words with 
one to four characters. To conduct a consistent evaluation, Jelinek-
Mercer smoothing method was used to build baseline trigram 
model by interpolating with unigram and bigram. To evaluate 
language model adaptation, we randomly sampled different sizes 
of adaptation data from MATBN corpus with 500, 1000, 2000, 
3000 and 4000 conversations. The significant level  was fixed to 
be 0.05 and the number of subsets K  was 50, which was sufficient 
to apply Gaussian assumption in this method. For parameter 
estimation, 20 iterations were performed in IIS algorithm. The 
language model scaling factor was set as 10 by optimizing the 
recognition accuracy of baseline model. MDI models with 
different order features were carried out for comparison. The test 
data of MATBN contained 22 minutes with totally 7473 characters. 

First, we analyze the relation between number of adapted 
utterances and the width of reliable regions. We randomly selected 
a trigram feature and calculated the width of reliable region using 
(11). The results in Table 1 show that the more data is available, 
the smaller the variation of a feature is. Therefore, when adapted 
data is fewer, the features are easier to be removed because a 
larger width of reliability implies a larger penalty. 

Table 1 Relation between the number of adapted utterances and the 
region width of a trigram feature 

Number of adapted utterances 
500 1000 2000 3000 4000

Width )10( 6 1.72 0.81 0.38 0.24 0.18 
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Next, we evaluate the proposed method using perplexity 
measure. Perplexity can be interpreted as the average number of 
branches in the text. The higher perplexity, the more branches the 
speech recognition system should consider. In the results of Figure 
2, when using 500 adapted utterances, the data is too sparse to 
estimate robust trigram statistics so that the adapted model by 
using trigram features greatly degrade the system performance. By 
increasing the amount of data, the perplexities of all methods are 
improved. Also, the proposed method attained lower perplexities 
than MDI models with unigram features as well as trigram features. 
If the data is sufficient to train trigrams for target domain, i.e. the 
case that the number of adapted utterances larger than 3000, the 
proposed method and the conventional MDI model with trigram 
features achieve comparable performance. Namely, reliable 
features can be adaptively induced for adaptation based on 
available data. 
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Figure 2 Perplexities using different adapted models 

Also, we applied the proposed model in speech recognition 
system. Figure 3 shows the character error rates using different 
adapted models. The inconsistence in perplexity performance is 
caused by the other factors, e.g. the effects of acoustic likelihood 
and competing hypotheses. Clearly, using inequality constraints 
for MDI adaptation attains better accuracy than using unigram and 
trigram features. In conclusion, the proposed method can reliably 
select the suitable features in different cases using various number 
of adaptation data for language model adaptation. 
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Figure 3 Character error rates using different adapted models 

5. CONCLUSIONS 
We have presented a new feature selection method for language 
model adaptation. Given the available adaptation data, we adopted 
re-sampling method to extract information for evaluating the 
reliability of features. Then, we calculated the confidence interval 
statistically and obtained the reliable region for each feature to 
calculate the confidential empirical expectation. A larger reliable 
region reflected a higher variation of feature statistics in the data. 
The corresponding features were more unstable and should be 
removed.  We defined inequality constraints by merging the 
reliable regions for MDI adaptation. We attained the interval 
estimate rather than the point estimate. Meaningfully, we obtained 
the MDI parameters by considering the likelihood function as well 
as the penalty terms. The penalty was proportional to the width of 
the reliable region. Therefore, the feature selection was done by 
balancing the likelihood and penalty. In the experiments, we 
carried the proposed method using Mandarin broadcast news data. 
Different sizes of adaptation data were analyzed. The proposed 
feature selection for MDI adaptation attained significant reduction 
of perplexity. The recognition performance was desirable as well. 

6. REFERENCES 
[1] J. R. Bellegarda, “Statistical language model adaptation: review and 

perspectives”, Speech Communication, vol. 42, pp. 93-108, 2004. 
[2] A. Berger, S. Della Pietra and V. Della Pietra, “A maximum entropy 

approach to natural language processing”, Computational Linguistics,
vol. 22, no. 1, pp. 39-71, 1996. 

[3] K. Chen and H.-H. Chen, “Cross-language Chinese text retrieval in 
NTCIR workshop – towards cross-language multilingual text 
retrieval”, ACM SIGIR Forum, vol. 35, no. 2, pp. 12–19, 2001. 

[4] J.-T. Chien, C.-H. Lee and H.-C. Wang, “A hybrid algorithm for 
speaker adaptation using MAP transformation and adaptation”, IEEE 
Signal Processing Letters, vol. 4, no. 6, pp. 167-169, 1997. 

[5] J. Darroch and D. Ratcliff, “Generalized iterative scaling for log-
linear models”, The Annals of Mathematical Statistics, vol. 43, pp. 
1470-1480, 1972. 

[6] M. Federico, “Efficient language model adaptation through MDI 
estimation”, in Proc. EUROSPEECH, pp. 1583-1586, 1999. 

[7] D. Francois, F. Rossi, V. Wertz and M. Verleysen, “Resampling 
methods for parameter-free and robust feature selection with mutual 
information”, Neurocomputing, vol. 70, 1276-1288, 2007. 

[8] J.-L Gauvain and C.-H. Lee, “Maximum a posteriori estimation for 
multivariate Gaussian mixture observation of Markov chain”, IEEE 
Trans. Speech and Audio Processing, vol. 2, no. 4, pp. 291-298, 1994. 

[9] D. Janiszek, F. Bechet, R. de Mori, “Integrating MAP and linear 
transformation for language model adaptation”, in Proc. ICSLP, vol. 2, 
pp 895-898, 2000. 

[10] J. Kazama and J. Tsujii, “Maximum entropy models with inequality 
constraints: A case of study on text categorization”, Machine 
Learning, vol. 60, pp. 159-194, 2005. 

[11] H. W. Kuhn and A. W. Tucker, “Nonlinear programming”, in Proc. of 
the 2th Berkeley Symposium on Mathematical Statistics and 
Probabilities, pp. 481-492, 1951. 

[12] P. S. Rao, S. Dharanipragada and S. Roukos, “MDI adaptation of 
language models across corpora”, in Proc. ICASSP, vol. 1, pp. 161-
164, 1995. 

[13] Y. C. Tam and T. Schultz, “Unsupervised language model adaptation 
using latent semantic marginals”, in Proc. ICSLP, pp. 2206-2209, 
2006. 

[14] P. Xu and F. Jelineck, “Random forests and the data sparseness 
problem in language modeling”, Computer Speech and Language, vol. 
21, pp. 105-152, 2007. 

5092


