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ABSTRACT

Understanding the bootstrapping process of speech representation in
infants is one key issue towards systems which may provide human-
like speech recognition abilities some day. Until now, almost all
current speech recognition systems have failed to integrate learning
into the recognition process. Here we propose a system for unsu-
pervised word-clustering, which is able to recognize and learn the
structure of speech online in a unified framework. To do so we’ve ex-
tended HMM-based filler-free keyword spotting with acoustic model
acquisition. To evaluate and control the dynamics of the combined
acquisition-recognition process we propose measures for model ac-
tivity, model correlation and speech coverage.

Index Terms— Speech recognition, Unsupervised learning, Clus-
tering methods, Hidden Markov models

1. INTRODUCTION

The holy grail of speech recognition research is to build systems
which automatically acquire the structure and meaning of spoken
language. However state of the art ASR frameworks are only de-
signed to detect predefined words using a predefined grammar. No
learning is possible with such systems, although it is clear that human-
like speech processing involves learning also during recognition.

Here we propose a new approach to learn the acoustical struc-
ture of speech based on incrementally trained Hidden Markov word
models. Thereby the idea is to combine unsupervised and supervised
speech segmentation methods to bootstrap a model-based language
representation. Essential to this approach is a regulative feedback
loop which controls the acquisition process.

Recently some authors have claimed to work in the direction of
unsupervised acoustic model acquisition (AMA) (ie. [1], [2], [3]).
But most of these works only describe methods for acoustic model
(AM) bootstrapping using a small set of annotated speech data: An
initial AM is trained supervised with this annotated training sample
and is employed to label a larger set of untranscribed speech. These
automatically labeled utterances are used to reestimate the model
parameters. Sometimes this process is used iteratively to further
increase AM goodness. As stated in [2] lightly, supervised AMA
seems to be a more appropriate name for such approaches.

Related to our work are the CELL framework proposed in [4]
and the incremental HMM training method for syllable-like units
described in [5]. The former defines a framework for multi-modal

learning where object labels and semantic categories are learned si-
multaneously. It lacks the implementation and evaluation of a top-
down feedback loop necessary to ensure a meaningful lexicon. Be-
sides that, its speech processing back end is an ANN-based phoneme
recognizer which has been shown to be less powerful for speech
recognition than Hidden Markov Models (cf. [6]). The approach
of [5] which groups similar segments to learn syllable models, lacks
the possibility to train models in a time-incremental manner.

The remainder of this work is organized as follows. In section 2
we describe the implemented speech acquisition architecture. Sec-
tion 3 presents suitable measures to reflect the current state of an
acoustic model and defines how to integrate these into a unified reg-
ulation framework for speech acquisition. Results are presented in
section 4 and discussed subsequently in section 5.

2. SYSTEM ARCHITECTURE

As depicted in figure 1, incoming speech is analyzed twice to detect
speech segments: using an energy based voice activity tracker and
a keyword spotting system which sets up on the word models con-
tained in the initially empty acoustic model. Inspired by the proper-
ties of child directed speech uttered by adults to ease the word model
bootstrapping of their children, we assume the input speech to occa-
sionally contain isolated words. These segments trigger the word
model acquisition process, which regulation is based on measures of
AM completeness, orthogonality and stability.

To avoid the usually difficult choice of a filler model for the
keyword spotter, the approach proposed by [7] was integrated: the
different keyword models analyze the speech input in parallel in or-
der to create segment hypotheses. All word models were chosen to
be HMMs with Bakis topology containing 8 states. Each state mod-
eled the feature space with a Gaussian mixture model comprising 4
component densities. Mel-frequency cepstral coefficients, normal-
ized energy, and their first and second-order derivatives were used to
define the 39-dimensional feature-space of the system.

Keyword spotting was preferred against a continuous speech
recognition approach in order to compute regulative measures for
acquisition control as depicted in section 3. Spotted segments might
be further employed within a multi-modal semantic learning frame-
work, and - as discussed in section 5 - could be used to derive train-
ing segments also within continuous speech utterances.
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Fig. 1. The combined acquisiton-recognition architecture.

2.1. The Bootstrapping Process

The AM is empty at the beginning and becomes populated with word
models over time. Given the empty AM, incoming training segments
are used to estimate a first word model. Because it cannot be as-
sumed that all initial training segments correspond to the same word,
this model should be thought of as a general word model and not as
a model of a specific word.

The unsupervised clustering method to bootstrap the AM is as
follows: let the acoustic model M contain at least one word model.
A new training segment X will be processed in two steps. First
the model λ∗ which is most likely to explain the given segment is
determined by

λ∗ = argmax
λ:M

P (X|λ) (1)

Thereby P (X|λ) denotes the data likelihood. For the second step
we assume the histogram of former training segment likelihoods of
λ∗ to be approximated by a probability distribution with the density
fλ∗(p). The corresponding cumulative distribution function Fλ∗ is
subsequently used to map P (X|λ∗):

ν(λ∗,X) = Fλ∗ (P (X|λ∗)) =
P (X|λ∗)∫

−∞

fλ∗(p)dp (2)

Given a threshold θ, two cases need to be considered (cf. figure 2):

1. ν(λ∗,X) ≤ θ : In this case the model λ∗ seems not to be
an appropriate model for X . But because λ∗ was found to be
the best matching model for X , a new model λnew is created
using the model parameters of λ∗ for initialization. The new
model is shifted towards X by performing a first parameter
update.

2. ν(λ∗,X) > θ : The model λ∗ seems to be appropriate to
model the current segment X , which will then be used to im-
prove/reestimate λ∗. If a defined amount of segments was
accumulated to estimate the model, it is tagged as stable.

This approach is related to Leader-Follower Clustering (cf. [8, Chap.
10.11]). Word classes are represented by points in HMM-space.
New data points are not HMMs itself, but speech feature segments
which are sampled from an existing or still unknown word/class-
HMM. Existing classes are matched against segments by computing
the data-likelihood for each class. This induces an ordering relation
within the current AM which defines the class generating process.

2.2. Model training

To reduce computational costs for training, Viterbi-alignment was
applied to split training segments into state-dependent training sam-
ples. This way, the estimation problem reduced to the adaption of the
state dependent output probability density functions. These were up-
dated by using maximum a-posteriori (MAP) training to overcome
the issue of few training data, to allow an incremental online learning
procedure and to integrate prior knowledge into the speech modeling
process by deriving new models from already existing ones (cf. [9]).

Additionally, to further increase the model quality, MAP-trained
models were reestimated once using the maximum likelihood train-
ing as soon as they become tagged as stable . Transition probabilities
were chosen to be fixed because of the dominant effect of the state
density values.

3. REGULATION

Regulation of the bootstrapping process may take place at different
stages. In contrast to supervised AMA we cannot rely on aligned la-
bels. Therefore, several measures are introduced which are intended
to reflect the current state of the acoustic model. Based on these
properties, methods of regulative feedback to control creation, up-
dating and pruning of models are presented.

Model spotting coverage Γ(t) describes how well a speech sig-
nal can be modeled at time t given the current acoustic model. It is
defined as the ratio of speech covered by at least one of the detected
keyword-segments to the overall amount of speech.

Model coactivity η(t) describes how sparse the overall spot-
ting activity is, i.e. how many of the models are generating segment
hypotheses at a given time. The more of them are active the more re-
dundant is the AM. Ideally, only one model is active at a given time.
It is measured pairwise in terms of correlated keyword spotting ac-
tivity. For two models i and j the model coactivity is denoted with
η(λi, λj , t).

Pool stability ψ(t) is defined as the ratio of stable models to non
stable models.

This triplet defines a concrete implementation of the regulariza-
tion terms commonly used for unsupervised learning tasks: com-
pleteness Γ, orthogonality η and stability ψ. To compute Γ and η a
history interval needs to be defined.

Based on these terms, the acquisition problem can be reformu-
lated as an optimization problem to provide a unified framework for
speech acquisition:

Γ + ψ − |η| → max! (3)

where | • | denotes a matrix norm.
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Fig. 2. Adaptive threshold selection for model splitting. Given low
coverage the splitting threshold θ is increased to ease the creation of
new models.

3.1. Regulation heuristics

Due to the nature of speech, problem 3 cannot be solved analytically.
Therefore, in order to bootstrap a meaningful speech representation
we use the proposed AM properties to regulate the bootstrapping
process presented in section 2.1. To do so, we define some heuris-
tics which are intended to bound the AM size and to to regulate the
splitting process.

(I) A first criterion to limit the number of models is based on
pool stability and speech coverage: new models are created only if

ψ(t) > Γ(t) (4)

Otherwise the best pool model is updated. Using this heuristic the
creation of new models is eased if speech coverage is low. Vice versa
the rule prevents the creation of new models if the current AM is al-
ready able to model the speech input well enough.

(II) Whereas the default acquisition loop assumes ν(λ∗,X) to
be greater than a fixed threshold, it might be more appropriate to use
an adaptive threshold. Such a threshold can be chosen as:

θ = θ0 · (1 + β · ψ) (5)

where β and θ0 are constants to be defined. If ψ ≈ 0 the θ is chosen
to be the default splitting threshold θ0.

Otherwise the stability weight β defines the increasing effect of
ψ. This regulation (cf. figure 2) is inspired by the idea to ease the
creation of new models if the AM is sufficiently stable. Low stabil-
ity prevents the creation of new models, to allow existing models to
reach a stable state by acquiring additional training data.

(III) Independently of the control of model acquisition, models
which represent the same acoustical entity will occasionally emerge.
Therefore a pruning criterion is necessary to remove such redundant
models from the AM. Given a pruning sensitivity α ∈ [0, 1] a prun-
ing rule can be defined by

η(λi, λj) > (1− α · Γ) ⇒ Delete model λi (6)

Thereby a model is pruned if the model coactivity exceeds a coverage-
adapted threshold. Given low coverage values, the adaption rule
avoids pruning in order to allow a continuing model adaption.

Number of words 10 20 30 Ref20
Processed speech 18min 36min 54min 36min

Speech coverage Γ 94.9% 95.5% 98% 95%
Pool stability ψ 0.85 0.91 0.92 1

# Models / # words 1.4 1.3 1.43 1
WER 19% 45% 42% 4%

Table 1. Final AM properties for corpora of different size. The last
column contains the baseline results for the 20 words scenario: In
method 2.1 the assignment/splitting decision is done always optimal
with respect to the corpus annotation

4. RESULTS

To ensure the training of meaningful models it is necessary to eval-
uate the system behavior when assigning training segments to mod-
els. This is only possible using additional supervised information.
Given supervised labels, training confusion matrices Tconf(t) were
computed by combining the training histograms of all models. Sub-
sequently, the matrix trace was maximized over all column permuta-
tions to make relation between models and labels more evident (cf.
figure 3(a)).

Additionally, to evaluate the detection performance of the emerg-
ing AM, we computed Dconf(t) based on the keyword detection ac-
tivities.

Assuming that human speech perception and the metric used
within the bootstrapping process match, we assigned labels to mod-
els based on the orthogonality information gained from Tconf . Do-
ing so, word error rates (WER) were computed on an annotated test
set every 60 seconds during the acquisition process. Detected non-
labeled supernumerary models were treated as recognition errors.
Nevertheless, it is not yet clear to us whether WER is suitable to
reflect the quality of the emerged AM.

4.1. Evaluation results

The speech acquisition system was evaluated on subsets of a single-
speaker speech database containing subsets of 10, 20 and 30 mono-
syllabic uniformly distributed isolated words (0.7 words/second).
Subsets of different size were used to evaluate whether regulation
takes place as expected, or whether the system parameterization ac-
counts for the emerging AM. For the same reason the length of the
speech input (cf. table 1) was chosen to be much longer than re-
quired to bootstrap a stable AM.

The models-words-ratio in table 1, AM stability and coverage
are always close to 1, which shows that the emerging AMs are appro-
priate to model the underlying speech corpora. Because of the self-
referential properties of our method, slight under- and over-represen-
tation is not avoidable.

The increase of WER for larger corpora depicts the current lim-
its of our method. One possibility to improve the recognition rate
would be to reuse training segments of pruned models. Additionally,
it might be beneficial to perform a reassignment of training segments
in a manner similar to [5].

As shown in figure 3 for the 10 words scenario, the proposed on-
line bootstrapping method leads to a stable representation of the un-
derlying speech entities. The achieved word error rate is 19% which
is larger than for the supervised case, but results from the imple-
mented unsupervised bootstrapping framework only. BecauseDconf
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(a) Training confusion Tconf . The trace dom-
inates the matrix which indicates that segments
were assigned models in a meaningful manner.
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(b) Detection confusion Dconf . Compared with
(a), models seem to be less selective for spotting
than for training.
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(c) Model coverage Γ. As soon as a stable set of
models has been established speech is modeled
to a stable amount.
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(d) Pool stability ψ. Short drops of stability are
due to the creation of new models.

0 5 10 15

0.25

 0.5

0.75

   1

t (min)

WER

(e) Word error rate WER. WER drops from
100% (because of an initially empty AM) to 19%.
WER was computed on an additional test set ev-
ery 60 seconds.
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(f) Model coactivity summarized by a Gaussian
with mean μη(t) of all η(i, j, t) and its variance
σ2

η(t). Sudden increases are due to the derivation
of new models from existing ones.

Fig. 3. Acquisiton process properties for the 10 words case. The used setting was θ0 = 0.05, β = 0.2 and α = 0.1

lacks of the orthogonality amount found for Tconf it seems reason-
able to conclude that the acquired models are sufficient to classify
input speech but not sufficient to be used as keyword spotting mod-
els. Cross-model correlations are inherent to our approach, but were
always canceled out after some additional training.

5. DISCUSSION

We proposed a method for unsupervised online word clustering by
combining ideas of unsupervised and supervised speech processing.
So far, the approach relies on speech which contains isolated words
for acquisition. The key concepts of the approach include a regula-
tion scheme which ensures high model activity sparseness and low
model correlation. Additionally the number of models was bounded
by using model pruning based on model activity correlation.

We could show that our current system is able to learn a sta-
ble set of word models independently of the number of words to be
modeled. Because the approach is based on time-continuous key-
word spotting and time-incremental training the method is suitable
for online learning. Currently we’re already working on using vi-
sual percepts to provide the necessary semantic grounding for the
acquired acoustical word models.

In this work we restricted ourselves to unsupervised word clus-
tering. This step was necessary to gain deeper insights into ongoing
processes during unsupervised word model acquisition. Our next
step towards unsupervised speech acquisition will be to also derive
new training segments within continuous speech by combining voice
activity and spotted word segments. Such a system won’t rely on
isolated words as input for training anymore. Assuming the input
to possess properties of child directed speech the approach might
be able to model some more aspects of the early speech acquisition
process of children.
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