
AUDIO-BASED UNSUPERVISED SEGMENTATION OF MULTIPARTY DIALOGUE

Pei-Yun Hsueh

School of Informatics
University of Edinburgh

2 Buccleuh Place, Edinburgh EH8 9WL

ABSTRACT

In this paper, we explore a novel way to leverage au-

dio information for unsupervised segmentation of multiparty

dialogue. Our system which segments directly on patterns

derived from audio sources is evaluated with previous work

that segments on lexical patterns found in transcripts. We

examine the effectiveness of both systems on recovering a

two-layer structure of meeting dialogue. We demonstrate that

the audio-based system performs significantly better than the

word-based system on this task. In particular, it effectively

recover segments of off-topic discussion. Results are encour-

aging as the audio information used in the system can be ob-

tained in near real time and with absence of manual and ASR

transcripts. It is particularly desirable when a system has to

be operated online, or in unfamiliar domains and languages.

Index Terms— meetings, clustering methods, acoustic

signal processing

1. INTRODUCTION

This paper addresses the challenge of segmenting meeting

recordings directly from the inputs of its audio source. In

particular, we focus on approaches that can be used to seg-

ment a meeting when still in progress, since we expect this to

be important to the development of downstream online appli-

cations that require immediate content-based access. In fact,

many automatic segmentation systems have been developed

to structure meeting recordings into a number of coherent

segments [1, 2, 3, 4, 5]. Typically, the task is decomposed

into a series of binary decisions, each of which determines

whether an utterance end contains a segment boundary or not.

The dominant approach is to train a classifier with rich fea-

tures that are obtained from both word transcripts and audio

inputs. Although this approach has achieved success, it has

some shortcomings. For one, training a well-performing dis-

criminative model requires plentiful labelled data; yet, it is

uncertain whether the trained model can be applied to seg-

ment meetings in a domain different from the labelled data.

One solution is to apply unsupervised approaches. Many

have followed TextTiling approaches, first put forth in [6], to

find optimal segmentation by locating lexical changes over

meeting speech [1]. These works in unsupervised segmenta-

tion commonly assume the availability of manual transcripts

or automatic speech recognition (ASR) outputs. Although

word errors introduced by high-quality off-line ASR systems

do not degrade segmentation performance [7, 5], we cannot

assume ASR outputs of this quality to be readily available in

the online scenario.

In the field of spoken language understanding, many re-

search groups have attempted to perform segmentation with-

out transcribing speech into word units first. Some have pro-

posed to locate changes over acoustic units. For example,

Malioutov et al. [8] use an unsupervised vocabulary acquisi-

tion technique [9] to derive sub-lexical units (i.e. those cor-

responding to high frequency words and phrases). So inter-

utterance similarity can be used in a clustering approach, orig-

inally developed for text segmentation [10, 11]. However, it

is uncertain whether the vocabulary acquisition algorithm that

works in monologues (e.g., lectures) is robust to processing

meeting dialogues which are recorded in a natural context.

Others have proposed to locate changes in speaker activity,

which are characterized by features obtained directly from au-

dio inputs [12, 1, 5].

In this paper, we perform unsupervised segmentation over

audio inputs. Our system leverages information that can be

obtained from audio inputs in near real time. In Section 2,

we describe how the speaker activity-enhanced phonetic rep-

resentations are processed and how the changes in repetitions

of phonemes and that of speaker activities are located. In Sec-

tion 4, we compare our audio-based system against the system

which segments meeting dialogue as text.

2. METHODOLOGY

In this work, our system find segmentation in phonetic units,

which have been used as proxies of words in many spoken

language understanding applications successfully. We modify

LCSeg, a lexical chain-based approach proposed in [1], to

segment multiparty discourse by locating dramatic changes

in the phonetic units over utterances.
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2.1. Phonetic Transcription

To characterize what has been transpired in a meeting, we

first have to convert speech signals into a sequence of units.

Previous work often do this using an ASR system. As we

would like to explore the use of a more language- and speaker-

independent way for such conversion, in this work we lever-

age a phoneme recognition model [13] that have been suc-

cessfully applied to cross-language tasks, such as automatic

language identification [14], and other spoken language un-

derstanding tasks, such as speech recognition and keyword

spotting. The phoneme recognizer is trained on ten hours of

the SpeechDat-E corpus 1, which consists of recorded spon-

taneous telephone conversations of 1,000 Hungarian speakers

and their pronunciation lexicon 2. Then the recognizer con-

verts speech signals in the following three steps.

• Feature extraction: First, speech signals are divided

into frames of 25 ms long with 10 ms shift. Next,

for each frame the system utilizes a Mel-filter bank to

obtain its short-term critical band logarithmic spectral

density. Finally, temporal pattern (TRAP) feature vec-

tors, i.e., temporal evolution of critical band spectral

densities within a single critical band, are generated.

• Phoneme classification: For each critical band a neu-

ral network classifier is trained to estimate the posterior

probabilities of sub-lexical classes (i.e., phonemes). Then,

the outputs of these single band classifiers are merged

in another neural network classifier such that a com-

bined estimation of phoneme probabilities can be yielded.

• Representation preparation: A Viterbi decoder is used

to produce phoneme strings. We then organize the se-

quence of phoneme strings into spurts, i.e., speaker turns

with pause no longer than 0.5 seconds in-between.

2.2. Modelling Speaker Activity

Previous work has demonstrated the changes in speaker activ-

ity as indicative of multiparty discourse segment boundaries

[12, 1, 5]. In this work we incorporate the following two types

of speaker activity into the recognized phonetic transcripts.

The first type (“SPK”) includes speaker movements which are

characterized by speaker noises (e.g., lip movement, cough),

intermittent noises (e.g., door open, note taking), filters (e.g.,

‘hmm’, ‘ah’) and pauses. The phoneme recognizer we use

in this work can provide such information. The second type

(“ACT”) depicts how talkative each speaker is over the se-

quence of spurts in the phonetic transcripts. Herein speaker

1Eastern European Speech Databases for Creation of Voice Driven Tele-

services. http : //www.fee.vutbr.cz/SPEECHDAT − E/.
2We use the phonotactic model that is trained on the part of Hungarian

speaker data in the corpus, because this model, as shown in [14], outperforms

the phonotactic models in other languages in the language identification task.

dominance is characterized as the number of phonemes tran-

spired in each spurt; accordingly, we could enhance the pho-

netic transcription with speaker ID tags, SPid, each of which

refers to the speaker of a recognized phoneme. Figure 1 (b) is

the speaker activity-augmented version of the phoneme rep-

resentation in Figure 1 (a).

(a) pau int h m o l k S spk s E m h u E k S m u: l k h E S O k S n E n spk pau

int n m spk spk o m O k pau int

(b) pau int h SPb m SPb o SPb l SPb k SPb S SPb spk s SPb E SPb m SPb

h SPb u SPb E SPb k SPb S SPb m SPb u: SPb l SPb k SPb h SPb E SPb S

SPb O SPb k SPb S SPb n SPb E SPb n SPb spk pau int n SPb m SPb spk

spk o SPb m SPb O SPb k SPb pau int

Fig. 1. Example of speaker activity-augmented phonetic rep-

resentation.

3. EXPERIMENT SETUP

This paper addresses the challenge of whether we can seg-

ment a multiparty dialogue recording over its audio sources.

In this paper, we perform experiments to answer the follow-

ing questions: (1) Whether a lexical chain approach can be

extended to find segmentation over utterances represented as

phonetic strings; (2) Whether providing speaker activity in-

formation in addition to phonetic transcripts can further re-

duce segmentation errors; (3) Whether segmenting on these

different versions of transcripts results in qualitatively differ-

ent predictions.

3.1. Corpus and Annotation

In this experiment, we use a set of 48 scenario-driven meeting

recordings from the AMI Meeting corpus. These recordings

come with manual annotations of hierarchical structure and

segment descriptions of these meeting dialogues. We follow

previous work to flatten the hierarchical annotations into a

two-layer structure of ground truth. We consider all the ma-

jor discussion segments as the first layer (TOP) and aggregate

all the segments in the annotation as the second layer (ALL).

The functional segments (FUNC), which serve the purpose of

smoothing the procession of a discussion rather than that of

contributing to the discussion, are also labelled3. On aver-

age, each meeting is divided into 14 segments at the second

layer (ALL), with around 8 segments at the first layer (TOP);

in this two-layer structure, functional segments (FUNC) ac-

count for around 42% of the top-level segments and 26% of

all segments.

3.2. Evaluation Metrics

We evaluate the success of segmentation systems using three

different metrics: overall segmentation error rate (in Pk and

3Examples of functional segments include opening, closing, chitchat, and

discussion about agenda and equipment issues.
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WindowDiff(WD)), time-based accuracy (in precision and re-

call), and structural similarity between hypothesized and ground-

truth segments. First, we use Pk and WD to provide an ag-

gregated account of segmentation errors. Then, we examine

which version of transcripts, among the others, yields best

predictions of functional segments. We study precision, that

is, the proportion of system-predicted segments which cor-

respond correctly to at least one of the functional segments

in ground truth, and recall, that is, the proportion of ground-

truth functional segment boundaries which correspond to at

least one of the hypothesized segments.

Finally, to understand the performance of segmentation

systems in the online scenario, it is also necessary to study

systems’ capability on gauging the total number of segments

in a target dialogue. The structural similarity score is com-

puted as obtaining the difference between the number of system-

hypothesized segments HY PK and that of the number of ref-

erence segments in ground truth HY PK and then dividing the

difference (HY PK-REFK) by REFK . The closer to zero,

the more similar is the system-hypothesized segment struc-

ture to ground truth.

4. RESULTS

Table 1 demonstrates the effects of different versions of tran-

scripts on segmentation performance. Line 1 shows the per-

formance of the LC model, which locates changes in lexi-

cal patterns over word transcripts. Line 2-3 show the perfor-

mance of the PH model, which locates changes in sublexical

patterns over phonetic transcripts4, and that of the PH+ACT

model, which locates changes over speaker activity-augmented

phonetic transcripts.

One important parameter to set in this unsupervised seg-

mentation system is the number of segments. In search for

segmentation systems that can work in online applications, in

this experiment we perform our experiments under two condi-

tions: in the first condition we set the number of segments as

the number of reference segments (K)5, while in the second

condition we use a statistically determined threshold to select

those most probable segment boundaries (unK)6. The first

four columns illustrate the K condition. Results show that,

when the number of segments is given, the LC model does

perform better than the PH model. However, when patterns in

speaker dominance (ACT) are jointly considered along with

phonetic chains, the new PH+ACT model yields competitive

performance to the LC model in the task of recovering top-

level segments (TOP) in a dialogue structure.

4The phonetic transcripts include both phonemes and information about

speaker movements.
5We experiment with this condition because we want to compare with

many of the previous work that use this setting.
6Our system follows previous work to select only potential boundary sites

of which the posterior probability predicted by the system are above the mean

minus half the standard deviation.

The right six columns illustrate the unK condition wherein

the number of reference segments is unknown. Comparing

the results across the two conditions, K and unK, clearly

shows a negative effect of the added structural uncertainty on

the LC model, increasing the error rate7 by 22% and 11% on

recovering segments at the top level and at all levels respec-

tively. In contrast, the added uncertainty does not significantly

affect the performance of the PH model. For the task of recov-

ering the top-level segments, the PH model outperforms the

LC model by 10%; Adding the model of speaker dominance

(PH+ACT) further reduces the error rate by 14%.

As functional segments covers nearly half of the top-level

segments (see Section 3.1), we expect the accuracy of pre-

dicting functional segments to be important to the success of

the models for top-level segmentation. Therefore, we perform

subsequent experiments to examine the effects of speaker activity-

based information on the accuracy of functional segment pre-

dictions. Line 1-3 in Table 2 show the results of operating the

system on lexical transcripts (LC), phonetic transcripts (PH),

and speaker activity-enhanced phonetic transcripts (PH+ACT).

Line 4-5 show the results of locating changes in speaker move-

ments and in speaker dominance respectively. Line 6 shows

the result of locating changes in both of these two types of

speaker activity information. Results suggest that, when the

number of segments is given, all the systems that locate changes

in speaker dominance patterns (i.e. ACT, PH+ACT, SPK+ACT)

yield better precision and recall than LC. In the more realistic

condition wherein the number of segments is unknown, these

systems still yield higher precision than LC, with the expense

of recall.

The columns of SSim in Table 1 and Table 2 demon-

strates the level of structural similarity between the prediction

of each of these systems that operate on different versions

of transcripts and the ground truth. The close-to-zero fig-

ures of the predictions among ACT-related models (such as

PH+ACT, ACT, and SPK+ACT) indicate that these systems

are better at predicting off-topic functional segments (FUNC).

5. CONCLUSION

Many lexical and non-lexical patterns can be used to recover

discourse structure in meeting recordings. Previous work in

unsupervised segmentation uses only the lexical patterns ob-

tained on word transcripts. In this work, we explored a novel

way to capture lexical patterns, that is, to convert the audio

inputs into a sequence of phonetic strings and to derive sub-

lexical patterns therein. In addition, we also explored two

ways to model non-lexical patterns that pertain to speaker

activities: speaker movement (i.e., speaker and intermittent

noise, filter, pause) and speaker dominance. We have per-

formed experiments to examine the effectiveness of these dif-

ferent patterns, which can be derived from the audio record-

7Since the scores of Pk and WD are both aggregated measures of segmen-

tation error rate, we report the change in only one of them, Pk.
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K unK

TOP ALL TOP ALL

Error Rate/SSim Pk WD Pk WD Pk WD SSim Pk WD SSim

LC 0.36 0.38 0.36 0.40 0.44 0.55 1.11 0.40 0.49 0.42

PH 0.42 0.43 0.43 0.45 0.40 0.41 0.14 0.41 0.42 -0.23

PH+ACT 0.36 0.39 0.40 0.44 0.35 0.36 -0.38 0.39 0.40 -0.58

Table 1. Effects of operating unsupervised segmentation on speaker activity-enhanced phonetic transcripts. Pk and WD are error rates of
the predictions. SSim is a measure of structural similarity of the predictions in relation to ground-truth segmentation.

K-TOP K-ALL unK

Accuracy/SSim Prec Recall Prec Recall Prec Recall SSim

LC 0.29 0.75 0.23 0.78 0.16 0.83 6.14

PH 0.27 0.65 0.21 0.70 0.28 0.69 1.91

PH+ACT 0.36 0.86 0.28 0.88 0.40 0.77 0.09

SPK 0.28 0.62 0.20 0.65 0.71 0.61 -1.00

ACT 0.38 0.84 0.25 0.84 0.43 0.77 -.0.05

SPK+ACT 0.37 0.82 0.27 0.88 0.39 0.80 0.39

Table 2. Effects of speaker-activity models on the accuracy of functional segment prediction. Under the K-TOP and K-ALL condition,
the number of manually annotated segments at the TOP and ALL level are given as a constraint for selecting top K predictions from the
hypothesis, whereas the number of segments is unspecified under the unK condition.

ings real time or at least in near real time, on the task of re-

covering a two-layer structure of meeting dialogues.

Experiments have shown that, when all of these phonetic

and speaker activity-related patterns are considered, our audio-

based system can yield results comparable to those obtained

by operating the system on manual transcripts. Consider a

real-life scenario wherein one has missed the first part of a

meeting and do not know how many topics have been dis-

cussed, our audio-based systems can significantly outperform

the word-based system.

Results are encouraging as it shows that speaker activity-

augmented phonetic units can serve as proxies of words in

unsupervised segmentation of meeting dialogues. Our audio-

based system can segment meeting dialogues in absence of

manual and high quality ASR transcripts. It is desirable to the

development of segmentation components that have to be op-

erated online, or in unfamiliar domains and languages. Also,

as the automatically derived dialogue structures can make up

for the lack of explicit orthographic cues (e.g., story and para-

graph breaks), the audio-based system is expected to be ben-

eficial to developing the online version of many downstream

spoken language understanding applications, such as anaphora

resolution, information retrieval (e.g., as inputs for the TREC

Spoken Document Retrieval (SDR) task), summarization, and

machine translation.
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