
USING DIALOGUE ACTS TO LEARN BETTER REPAIR STRATEGIES FOR SPOKEN
DIALOGUE SYSTEMS

Matthew Frampton

Center for the Study of Language and Information
Stanford University

frampton@stanford.edu

Oliver Lemon ∗

School of Informatics
University of Edinburgh
olemon@inf.ed.ac.uk

ABSTRACT

Repair or error-recovery strategies are an important design is-
sue in Spoken Dialogue Systems (SDSs) - how to conduct the
dialogue when there is no progress (e.g. due to repeated ASR
errors). Nearly all current SDSs use hand-crafted repair rules,
but a more robust approach is to use Reinforcement Learning
(RL) for data-driven dialogue strategy learning. However, as
well as usually being tested only in simulation, current RL
approaches use small state spaces which do not contain lin-
guistically motivated features such as “Dialogue Acts” (DAs).
We show that a strategy learned with DA features outperforms
hand-crafted and slot-status strategies when tested with real
users (+9% average task completion, p < 0.05). We then
explore how using DAs produces better repair strategies e.g.
focus-switching. We show that DAs are useful in deciding
both when to use a repair strategy, and which one to use.

Index Terms—Natural language interfaces, Adaptive sys-
tems, Speech processing, Cooperative systems

1. INTRODUCTION

Using Reinforcement Learning (RL) [1] to learn dialogue strate-
gies for Spoken Dialogue Systems (SDSs) was initially pro-
posed by [2]. RL involves learning a series of actions to take
in different states so as to maximize long-term reward. Ap-
plied to SDSs, actions correspond to system actions, states
represent the dialogue context, and the reward function re-
wards favourable dialogue outcomes e.g. task completion, short
length, high user satisfaction. In earlier research where strate-
gies were learned for information seeking/slot-filling SDSs,
the state contained only slot-status information e.g. whether a
slot was filled/confirmed, but more recently [3] and [4] have
explored adding Dialogue Acts (DAs). DAs are linguistic
representations of the communicative intent of a user or sys-
tem utterance, e.g. “provide info(hotel type(luxury))” or “re-
quest info(origin)”. Our DA taxonomy is based on the DATE
[5] scheme used for the COMMUNICATOR corpus. Using a

∗This work is partially funded by the EPSRC (grant number
EP/E019501/1) and the EC FP7 project “CLASSiC” (ICT-216594).

reward function based on task completion and dialogue length
[4] learned and tested strategies with n-gram simulations de-
rived fromCOMMUNICATOR data [6] and found that a small
amount of DA history improved learned strategy performance.
The DA-strategies often differed from the “slot-status only”
strategy when the user failed to fill/confirm a slot value (e.g.
due to an ASR error). Whereas the latter would always re-
peat its last question/ confirmation, the former sometimes em-
ployed alternative repair strategies e.g. switching focus to an-
other slot or giving help. These repair strategies improved
performance - they were more effective at getting the dialogue
back on track and so achieved task completion in fewer turns.
This prior work [4] then suggests that previous DAs can

be used to learn better repair strategies, but outstanding issues
remain which we address here. First, Section 2 will describe
how we learn dialogue strategies and provide initial analysis,
before Section 3 describes an experiment which tests whether
the DA-strategies also perform better with real users of SDSs.
Given the positive results, we move on to further simulation
experiments which investigate why the DA-strategies are bet-
ter. In Section 4, we test whether the DAs are only proving
useful for learning repair strategies. Section 5 then describes
an experiment which investigates the importance of DAs in
choosing which repair strategy to apply.

2. LEARNING THE DIALOGUE STRATEGIES

We built an RL program which uses the Sarsa(λ) algorithm
(see [1]) to learn a dialogue strategy as it interacts with a
stochastic user simulation via a dialogue manager. For learn-
ing and testing here and in Sections 4 and 5, the reward func-
tion gives +100 if all of the slots are confirmed at the end of
a dialogue, and -5 for each system turn. The user simulations
are n-grammodels (n=4 and n=5) learned from the COMMU-
NICATOR data that output new user DA(s) based on the DAs
of the last n-1 turns [6]. We learned three-slot strategies with
the 4-gram simulation and tested them with the 5-gram, and
vice-versa (the “TownInfo” system [7] used in our real user
experiment, (see Section 3), has three information slots). The
following state representations were used:

50451-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

• Slot-Status Strategy: Only the slot-status features, where
each can take the value “empty”, “filled” or “confirmed”

• DA1-Strategy: The slot-status features + the DA(s) of
the last user turn.

• DA2-Strategy: The slot-status features + the DAs of the
last system and user turns.

DAs of turns further back than the last system turn were be-
yond the context window to which the 4-gram user simula-
tion can be sensitive, and so could not have improved the
learned strategy. The system DA set, (which is the same
throughout the paper), includes a mixed-initiative open ques-
tion i.e. “How may I help you?”, questions for each slot, ex-
plicit confirmations, combinations of implicit confirmations
and questions, giving help, and querying the database for suit-
able options (this terminates the dialogue). The reinforcement
learner can only choose the open question on its first turn in
the dialogue, and it can only confirm non-empty slots.
After 50000 training dialogues 1, each strategy was tested

over 10 sets of 100 dialogues. Since the simulations failed
to simulate unobtainable slot-values, in testing here, and in
the experiments of Sections 4 and 5, the strategies were al-
ways able to confirm all of the slots. However due to shorter
dialogue length, like [4], we found that DA1 outperformed
the Slot-Status Strategy (p < 0.05), and DA2 outperformed
DA1 (p < 0.05). On analysis, the DA-strategies only seemed
to differ from the Slot-Status Strategy when the user failed to
fill/confirm a slot . Whereas the Slot-Status Strategywould al-
ways repeat its last question/confirmation, the DA-strategies
used additional repair strategies: “switching focus” (asking/
confirming a different unfilled/unconfirmed slot), giving help,
and “backtracking” (re-asking a filled slot). NB. See Table 1
for examples of the first two strategies. Although it repeats its
previous question when the very first user turn fails to fill a
slot value, DA2 often uses one of the three new repair strate-
gies: it uses switching focus more than giving help and back-
tracking and tends to use the latter two if the dialogue remains
stalled after first switching focus. Other usages are when two
of the three slots are confirmed and hence switching focus is
impossible. These new repair strategies then apparently im-
proved performance, and we will analyse this futher below.

3. TESTING ON REAL USERS

We next investigated whether learning with DAs had pro-
duced strategies which also perform better with real users.
Like [8], although our strategies were learned using COM-
MUNICATORusers (in the flight-booking domain), we tested
on real users in a tourist information domain using the “Town-
Info” SDS [7]. To do this, we treat the learned policy as an

1For DA2, (the largest state-action space), approx. 6000 state-action pairs
were visited with the 4-gram simulation, and approx. 6000 with the 5-gram.

Speaker System state/User utt & (DA) Sys action
System: [e,e,e,none,none] askSlot1
User: “. . .” (quiet)
System: [e,e,e,askSlot1,quiet] askSlot1
User: “[ASR rejection]” (null)
System: [e,e,e,askSlot1,null] askSlot3
User: “26th of June” (giveSlot3)
System: [e,e,f,askSlot3,giveSlot3] IC3 askSlot2
User: “. . .” (quiet)
System: [e,e,c,IC3 ask2,quiet] askSlot1
User: “. . .” (quiet)
System: [e,e,c,askSlot1,quiet] giveHelp
User: “[ASR rejection]” (null)
System: [e,e,c,giveHelp,null] askSlot1
User: “New York” (giveSlot1)

Table 1. Example exchanges in a learned DA2-strategy dialogue
showing different repair strategies: re-asking, switching focus, and
giving help. In the system’s states, the first 3 positions are slot-status
(‘e” = empty, “f” = filled, “c” = confirmed), and the next 2 positions
are the DAs of the last system and user turns (“IC3” = implicit con-
firmation of slot 3.) In COMMUNICATOR, slot 1 = departure city,
slot 2 = destination city, and slot 3 = depart date.

abstract policy for filling user information slots, regardless of
their specific type (e.g. destination city vs. restaurant cuisine).

3.1. Methodology

In the first phase of a “TownInfo” dialogue, the system must
ascertain whether the user is interested in a hotel, bar, or
restaurant, and then during the second slot-filling phase, try
to elicit information from the user to fill and confirm slots
for type, location, and price. In the final phase, the sys-
tem retrieves suitable options from its database, and uses its
GUI to highlight them on a map. We left the hand-crafted
strategies used in the first and final stages unchanged, and
tested three different strategies in the slot-filling phase - the
Slot-Status Strategy, the DA2-Strategy, and a state-of-the-art
mixed-initiative hand-crafted strategy. Implementing the strate-
gies involved mapping between COMMUNICATOR and
“TownInfo” slots types as described in [8]. The hand-crafted
strategy attempts to fill/confirm the slots in the default or-
der 1 − 3 (overanswering is allowed), and does not make a
database query until all slots are confirmed. Since the DA-
strategy had been learned in a different domain, if it was suc-
cessful here then it could be considered an effective generic
slot-filling strategy. Each of 11 subjects was given a question-
naire which contained 15 tasks to attempt, (5 for each of the
3 strategies), and learning and temporal ordering effects were
controlled for. The slot-filling strategywas the only part of the
system that was varied. Evaluation measures were collected
for dialogue length and Perceived Task Completion (PTC).

5046

3.2. Results and Analysis

As displayed in Table 2, PTC for the DA-Strategy was higher
than for both the Hand-crafted and Slot-Status Strategy (+9%,
p < 0.05) 2. The average number of system turns per dia-
logue for the DA-Strategy was fewer than for the Slot-Status
Strategy (p < 0.05).

Strategy PTC % Av. Sys turns
DA2 90.91** 7.95*
Hand-crafted 81.82 8.46
Slot-status 81.82 8.98

Table 2. PTC = Perceived Task Completion; ** = signifi-
cantly better than both Hand-crafted and S-S (p < 0.05), * =
significantly better than S-S strategy (p < 0.05).

These experiments certainly emphasized why re-asking
or re-attempting a confirmation is often a poor repair strat-
egy. When the last user turn had failed to fill/confirm a slot-
value it was usually due to one or more ASR errors. The
repetition then employed by the Slot-Status and hand-crafted
strategies was very likely to frustrate the user, eliciting ir-
ritated/hyperarticulate speech which caused further ASR er-
rors, and so longer dialogues and lower task completion.
The positive result justifies training and testing new strate-

gies with the n-gram simulations (see also [8]) in order to ad-
dress outstanding issues. For instance, do the DAs really only
add value in terms of learning repair strategies? With respect
to the repair strategies, are the DAs only useful for indicat-
ing that the slot-status features are unchanged and hence that
a repair strategy is required, or do they also affect which re-
pair strategy is best to use? Perhaps they do affect which is
best to use but nonetheless, finding the optimal repair strategy
is very simple because any “sensible” avoidance of repetition
will always be optimal. We consider any of the repair strate-
gies that emerged from the RL to be “sensible”, e.g. having
asked for a slot-value on the last turn, switching focus, giv-
ing help or backtracking would be “sensible”. Recall that the
RL dialogue manager cannot attempt to confirm empty slots -
clearly not a sensible way to avoid repetition.

4. ARE DIALOGUE ACTS ONLY USEFUL FOR
REPAIR STRATEGIES?

We first investigated whether DAs only improve the learned
strategy through repair strategies - perhaps DAs also make
other less noticeable improvements. To explore this, we learned
Strategies DA1β and DA2β for which the DA features were
changed to only take a DA value when the slot-status features
are unchanged. Hence DAs were ignored where progress was
being made in the dialogue.

2By chance, both the S-S and Hand-crafted systems achieved PTC in 45

out of 55 dialogues (81.82%)

4.1. Results

As displayed in Table 3, there was no significant difference
in the performance of Strategies DA1 and DA1β , or DA2 and
DA2β . Hence ignoring DAs in contexts where progress is
being made in the dialogue has no significant impact on the
learned strategy’s performance - the value of the DAs here
seems to be entirely in learning repair strategies.

Strategy Av. Reward Conf. Slots Sys. Turns
DA2 59.46 100 8.11
DA2β 59.40* 100 8.12*
DA1β 58.86 100 8.23
DA1 58.56 100 8.29

Table 3. Each strategy trained for 50000 dialogues with
4-gram, then tested for 1000 with 5-gram, and vice versa.
Scores are average of the two tests. * = improvement (p <

0.05) over strategy beneath in list.

5. THE IMPORTANCE OF DIALOGUE ACTS IN
CHOOSING A REPAIR STRATEGY

DAs indicate when slot-status features are unchanged, and
hence a repair strategy is required, but do they also affect
which repair strategy is best to apply? That the top-performing
DA strategies use different repair strategies where only the
DAs differ (see Table 1) suggests they do. To investigate fur-
ther, we first learned a new strategy using slot-status features
and a Slot-Features Unchanged (SFU) feature which records
whether the former are unchanged by the last user turn. Re-
call that the real user tests highlighted that repetition can be a
poor repair strategy. Hence there is the possiblility that DAs
do affect which repair strategy should be used, but choosing
the best repair strategy is still very simple because any “sen-
sible” avoidance of repetition will always be optimal, (“sensi-
ble” was defined in Section 3.3.). Hence we also tested three
strategies which follow DA2 until the slot-status features are
unchanged, and then they always take a sensible action which
is different from the last system action. The first switches fo-
cus to an unfilled/unconfirmed slot (SF) 3, while assuming the
slot-status features continue to be unchanged, the second al-
ternates betweeen first giving help and then re-attempting the
original question/confirmation (HR), and the third between
giving help and then switching focus (HSF).

5.1. Results

The testing results are displayed in Table 4. They show that
the new SFU learned strategy and the strategies which always
use a sensible “non-repeating” repair strategy but otherwise

3If there are no unfilled/unconfirmed slots to switch focus to, the strategy
continues to follow DA2.

5047

follow DA2 all perform significantly worse than DA2. Hence
recent DAs are useful for choosing which repair strategy to
apply, and it is not the case that any sensible repair strategy
which avoids repetition will necessarily be optimal.

Strategy Av. Reward Conf. Slots Sys. Turns
DA2 59.46* 100 8.11*
DA2+HR 54.15 100 9.17
SFU 53.47 100 9.31
DA2+HSF 53.22 100 9.36
DA2+SF 52.01 100 9.60

Table 4. Strategies, (except for repair parts - SF, HR and
HSF), trained for 50000 dialogues with 4-gram simulation,
then tested for 1000 with 5-gram, and vice versa. Scores are
average of the two tests. * = improvement (p < 0.005).

6. CONCLUSIONS

We used RL with COMMUNICATOR n-gram user simula-
tions [6] to learn dialogue strategies. Like [4], we found that
state spaces using DAs in addition to slot-status information
produced strategies which performed better in testing with the
simulations. Since the DA-strategies only seemed to differ
when the user failed to fill/confirm a slot value, this seemed
to be why. Whereas the Slot-Status Strategy would always
repeat its last question/confirmation, the DA-strategies often
employed alternative repair strategies: switching focus (ask-
ing/confirming a different unfilled/ unconfirmed slot), giving
help, and backtracking (re-asking a filled slot).
In the first of three further experiments, we then ported

a DA strategy, the Slot-Status strategy and a state-of-the-art
hand-coded strategy to the tourist information domain, and
tested on 11 real users (165 dialogues) with the “TownInfo”
SDS [7]. The DA-strategy outperformed the other two strate-
gies in terms of task completion (+9% average, p < 0.05),
and dialogue length (p < 0.05 v. Slot-status). This then
confirmed that the DAs had produced a strategy which was
more effective for real users, and justified using the simula-
tions for further analysis. Analysing the real user experiments
emphasized why repetition is often not an optimal repair stat-
egy - repetition frequently frustrated the user, eliciting hyper-
articulated/irritated speech which caused more ASR errors,
and so longer dialogues and lower task completion.
In the second experiment, when tested with the n-gram

simulations, strategies learned with DAs only when the slot-
status features were unchanged, performed as well as the equiv-
alent original DA strategies. Hence the DAs only seemed to
improve the learned strategy with regard to repair. In the final
experiment, worse performance than DA-strategies (+ > 1
system turn on average, p < 0.05) is obtained firstly by a
strategy learned with a feature that records whether the slot-
status features are unchanged, and secondly by strategies which

follow the best DA-strategy until the slot-status features are
unchanged,whereupon they always use the same sensible “non-
repeating” repair strategies e.g switching focus. The first re-
sult shows that DAs improve the learned strategy not only be-
cause they indicate when a repair stategy is required, but also
because they affect which is best to use (see Table 1 for ex-
amples). Given this, the second result shows that finding the
best repair strategy is not as simple as choosing any sensible
action which avoids repeating the last system action.
Future work will involve addressing the outstanding issue

of how much dialogue history is relevant. A possible method-
ology is to apply feature selection e.g. CFS [9] to the COM-
MUNICATOR data. If this suggests that we should ideally
use more dialogue history in the RL, to do so would then
require a user simulation whose behaviour is sensitive in a
realistic manner to this additional dialogue history. These ap-
proaches will ultimately lead to a data-driven methodology
for the design and automatic optimization of robust SDSs.

7. REFERENCES

[1] R. Sutton and A. Barto, Reinforcement Learning: An
Introduction, TheMIT Press. Cambridge, Massachusetts,
USA, 1998.

[2] E. Levin, R. Pieraccini, and W. Eckert, “Using Markov
Decision Processes for learning dialogue strategies,” in
Proc. ICASSP, 1998.

[3] J. Henderson, O. Lemon, and K. Georgila, “Hybrid rein-
forcement / supervised learning of dialogue policies from
fixed datasets,” Computational Linguistics, 2008, (to ap-
pear).

[4] M. Frampton and O. Lemon, “Learning more effective
dialogue strategies using limited dialoguemove features,”
in Proc. ACL, 2006.

[5] M. Walker and R. Passonneau, “DATE: A Dialogue Act
Tagging Scheme for Evaluation of Spoken Dialogue Sys-
tems,” in Proc. of HLT Conference, 2001.

[6] K. Georgila, J. Henderson, and O. Lemon, “Learning
User Simulations for Information State Update Dialogue
Systems,” in Eurospeech, 2005.

[7] O. Lemon, K. Georgila, J. Henderson, and M. Stuttle,
“An ISU dialogue system exhibiting reinforcement learn-
ing of dialogue policies: generic slot-filling in the talk
in-car system,” in Proc. of EACL, 2006.

[8] O. Lemon, K. Georgila, and J. Henderson, “Evaluat-
ing effectiveness and portability of reinforcement learned
strategies,” in Spoken Language Technology, 2006.

[9] M. Hall, Correlation-based Feature Selection For Ma-
chine Learning, Ph.D. thesis, Waikato University, 1999.

5048

