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ABSTRACT
As spoken dialogue systems become deployed in increasingly com-
plex domains, they face rising demands on the naturalness of in-
teraction. We focus on system responsiveness, aiming to mimic
human-like dialogue flow control by predicting speaker changes as
observed in real human-human conversations. We derive an instan-
taneous vector representation of pitch variation and show that it is
amenable to standard acoustic modeling techniques. Using a small
amount of automatically labeled data, we train models which signif-
icantly outperform current state-of-the-art pause-only systems, and
replicate to within 1% absolute the performance of our previously
published hand-crafted baseline. The new system additionally offers
scope for run-time control over the precision or recall of locations at
which to speak.

Index Terms— Speech communication, User interfaces, Speech
processing, Frequency domain analysis, Signal representation.

1. INTRODUCTION

As spoken dialogue systems (SDSs) become deployed in increas-
ingly complex domains, such as tutoring, entertainment and games,
they face rising demands on the naturalness of interaction. A conver-
sational SDS, which aims to be “human enough that we respond to
it as we respond to another human” [1], needs to be flexible, robust,
and responsive. Although all SDSs must identify places where they
can legitimately begin talking without interrupting, this is especially
true for systems which strive to mimic human behavior. A large
number of inappropriately late responses can ruin the illusion of hav-
ing a conversation with the system. However, conversational speech
also contains many long (≥0.5s) within-utterance pauses, where a
careless SDS may inappropriately barge in.

Current state-of-the-art SDSs identify suitable places to speak
with the help of an end-of-utterance (EOU) detector. This compo-
nent relies on speech activity detection (SAD), which marshals spo-
ken input into contiguous intervals of speech with internal pauses no
longer than a predefined threshold; we will refer to these intervals
as talkspurts [2]. Candidate EOUs are considered only at end-of-
talkspurt (EOT) events. In the majority of SDSs currently in use,
this determination is based exclusively on the duration of the post-
EOT pause. Such systems tend to favor politeness over a high num-
ber of interruptions by choosing long pauses (1–2s), rendering the
conversation less responsive than with a human interlocutor.

Research which has addressed this issue has relied on SAD post-
processing for faster EOU prediction, using automatic speech recog-
nition (ASR) output [3, 4], models of prosody [5], or a combination
of the two [6]. With the exception of our own work [5], these stud-
ies have focused on improving human-computer speech by studying

Duration Dialogue role gData Set
(mn:ss) speakers # EOTs # SCs

DEVSET 77:40 F4,F5,M2,M3 480 222
EVALSET 60:39 F1,F2,F3,M1 317 149

Table 1. Size, speakers, number of end-of-talkspurt (EOT) and
speaker change (SC) events for the speaker in role g in our datasets.

existing, pause-governed human-computer interaction; it is there-
fore unclear how well-suited they are for improving models of more
human-like conversational speech.

In this work, we explore when humans choose to speak, in highly
interactive human-human dialogues (described in Section 2). We
characterize an inexpensive, automatic means [5] of assigning labels,
based on human interlocutor behavior, in Section 3. In Section 4, we
evaluate these labels with respect to several baselines. Using the
labels as targets, we train acoustic models of prosodic variation to
predict, in unseen data, whether humans would or would not begin
speaking. To achieve this, we propose a vector representation of
delta pitch, or variation in fundamental frequency (F0), in Section 5,
which differs from current scalar-valued representations in that it is:
(1) instantaneous, not relying on adjacent frames; (2) continuous,
defined for all time; (3) distributed; and (4) potentially sparse, suit-
able for the application of standard acoustic modeling techniques.
We present validating experiments in Section 6.

2. HUMAN-HUMAN DIALOGUE CORPUS

For our study, we use Map Task [7] dialogues, representatative of
spontaneous collaborative speech. AMap Task dialogue has two par-
ticipants: a giver (g), providing instructions, and a follower (f ). The
task is for the giver to describe a route indicated on his or her map
to the follower. The differences between this domain and less in-
teractive, currently studied human-computer domains such as ATIS
are significant; for example, [8] cites a range for disfluencies (which
include pauses) of 0.8–2.1% of words for human-computer interac-
tion and 5.5–7.3% of words for human-human interaction, with the
higher numbers representative of Map Task-like domains.

The specific corpus used here is the Swedish Map Task Corpus
[9]. We divided this data into a development set (DEVSET) and an
evaluation set (EVALSET) which are disjoint in speakers (cf. Ta-
ble 1). The division was chosen to enable comparison with our pub-
lished work [5] on the EVALSET. For the same reason, we use EOTs
only from the speaker in role g, extracted using the current version
of the SAD (with a minimum pause of 300 ms) used in that work.
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3. LABELING FRAMEWORK

Manual annotation of human-human dialogue is labor-intensive and
therefore expensive. Since large amounts of data are likely to be
needed to train suitable models of human-human behaviour, there
is scope for alternatives to human labeling. In previous work [5],
we used the presence of observed speaker change as a measure of
appropriateness. In this section, we explain these labels in detail.
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Fig. 1. g’s and f ’s talkspurts in the vicinity of an EOT in g’s speech
at instant t; time shown from left to right. Symbols as in Section 3.

In considering whether a particular talkspurt of speaker g, ter-
minating at time t, is likely to be followed by a speaker change, we
inspect how speaker f behaved under the circumstances, shown in
Fig. 1. The pause between the currently terminating talkspurt and
g’s next talkspurt has duration T t

g,N . We do not consider overlapped
vocalization. f produces his or her next talkspurt at t+T t

f,N . Given
only this characterization, we can inspect whether, following time t,
the next talkspurt was produced by f or by g. We refer to the for-
mer as a speaker change (SC), and the latter as not a speaker change
(¬SC). Therefore, the label assigned to the EOT at time t is

Lt =

j
SC if T t

f,N − T t
g,N < 0

¬SC, otherwise (1)

In this work, online estimation of appropriateness to vocalize at time
t by the system consists of predicting the value ofLt given a prosodic
description of the last 500 ms of speech terminating at time t (shown
in black in Fig. 1).
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Fig. 2. Normalized distribution of human-annotated appropriate-
ness labels over the automatically produced SC and ¬SC labels; the
x−axis shows summed appropriateness votes from three labelers.

4. BASELINE

Although prosody can sometimes signal whether an EOT is appro-
priate for SC, the appropriateness of an SC does not guarantee its
occurrence. To evaluate the relationship between these two factors,
we compared the automatic Lt labels with human assessment made
independently by three judges. Presented with 1.5s of audio preced-
ing every EVALSET EOT, in random order, each judge was asked
whether the EOT was an appropriate place to speak on a five-point
Likert scale. Inter-labeler consistency was high; α for the five-point

scale was 0.95, and pairwise κ for the binary decision appropriate
vs inappropriate (i.e. pooling 1-3 and 4-5 on the scale) was 0.70–
0.88. The sum of the three Likert scores was used as a descriptive
measure of appropriateness; we show the distribution of scores over
automatic Lt in Fig. 2. There is a clear correlation between high
appropriateness and an actual SC, and a very strong correlation be-
tween ¬SC and those EOTs judged as highly inappropriate.

Fig. 3 shows receiver operating characteristic (ROC) curves for
SC/¬SC discrimination for three baseline methods. First, we pro-
duced a curve by varying a threshold for the sum of the human
appropriateness labels. The algorithm predictably overgenerates, a
characteristic of dialogue types in which SCs are optional; the high-
est dot, representing the most aggressive system with a threshold of
4, rejects only unanimously inappropriate EOTs, but still incurs a
false positive (FP) rate of 50%. Dialogue types in which the most
appropriate places for SCs are only actual SCs, such as question-
answering, tend to show a low FP rate. The ROC curve in [6], for
instance, indicates a FP rate of <13% if every EOT is selected.

The second curve in Figure 3, for a system relying exclusively
on pause length, was computed following [6]. Also shown are the
results for our baseline hand-crafted automatic system in [5]. They
represent the performance of an aggressive and a non-agressive ver-
sion of the system. Note that the baseline system can only be oper-
ated at the two levels of aggressiveness shown.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

>14

>13

>12

>11

>10

>3
0.4s

0.5s

0.75s
1.0s

1.5s

2.0s

NONAGRESSIVE

AGGRESSIVE

false positive rate (FPR)

tru
e 

po
si

tiv
e 

ra
te

 (T
P

R
)

appropriateness
pause only
baseline, cf. [5]
random

Fig. 3. ROC curves for the baselines described in Section 4.

It should be noted that the three baselines represent quite differ-
ent temporal situations. The pause threshold system responds after
0.3—2.0 s depending on which part of the curve we examine, the
system used in [5] responds in 0.3 s in both cases, and the human
annotators had no knowledge of the pause length following the stim-
uli they heard, so they can be said to respond instantly. When the
pause threshold system incurs fewer FPs, it is significantly slower.

5. THE DELTA PITCH REPRESENTATION

Instantaneous variation in pitch is normally computed by determin-
ing a single scalar, the fundamental frequency (F0), at two tempo-
rally adjacent instants and forming their difference. F0 represents
the frequency of the first harmonic in a spectral representation of a
frame of audio, and is undefined for signals without harmonic struc-
ture. In the context of speech processing applications, we view the
localization of the first harmonic, and the subsequent differencing of
two adjacent estimates, as a case of suboptimal feature compression
and premature inference, since the goal of such applications is not
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the accurate estimate of pitch. In particular, we would like to lever-
age the fact that all harmonics are spaced equally in each of the two
adjacent frames, and use every element of a spectral representation
to yield a representation of the F0 delta.

ω
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+T0−T0τ
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FR (ω, +T0)
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Fig. 4. The standard dot-product shown as an orthonormal projection
onto a point at infinity, and the proposed vanishing-point product,
which generalizes to the former when τ → ∞.

To this end, we propose a vector-valued representation of pitch
variation, inspired by vanishing-point perspective, a technique used
in architecural drawing and grounded in projective geometry. While
the standard inner product between two vectors can be viewed as the
summation of pair-wise products with pairs selected by orthonor-
mal projection onto a point at infinity, the proposed vanishing-point
product induces a 1-point perspective projection (see Fig. 4). In ef-
fect, frequency dilation or compression of one or both of the fre-
quency representations is controlled by the distance τ . The proposed
vector-valued representation of pitch variation is the vanishing-point
dot-product, evaluated over a continuum of τ .

In computing the vanishing-point product gτ
t0 (τ) at time t, we

consider the short-time frequency representation of the left-half and
the right-half portion of a single analysis window centered at time t0.
We refer to these as Ft0,L

`
ejω

´
and Ft0,R

`
ejω

´
, respectively (but

drop the t0 subscript in the ensuing derivation for clarity); they are
obtained using two asymmetrical windows which are mirror-images
of each other, as shown in Fig. 5.
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Fig. 5. Left and right windows used for the computation of FL

and FR, respectively, consisting of asymmetrical Hamming window
halves. T0 is 4 ms, and T1 is 12 ms, for a full analysis window width
of 32 ms. A 32 ms Hamming window is shown for comparison.

The vanishing-point projection metaphor allows for a direct deri-
vation of gτ (τ) from Fig. 6 (the mirror image of the figure, for
τ > +T0, is not shown due to space constraints) to yield:

gτ (τ) (2)

=

8<
:

R
+fs/2

−fs/2
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““
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”
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”
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R (f) df τ < −T0R
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R

““
+τ−T0

+τ+T0

”
f

”
df τ > +T0

ω

τ t− t0

θ

+T0−T0

+π

Ft0,L (ω)
Ft0,R (ω)

(τ + T0) tan θ

(τ − T0) tan θ

Fig. 6. Computation of gτ (τ) for τ < −T0; FL and FR are at −T0

and +T0, respectively. θ0 = arctan fs/2 (|τ | + T0).

We then define a conformal mapping of τ onto

ρ =

8<
:

− log2

“
−τ−T0

−τ+T0

”
τ < −T0

+ log2

“
+τ−T0

+τ+T0

”
τ > +T0

(3)

It can be observed that ρ and τ are conveniently of opposite sign (at
arg maxτ gτ (τ) < −T0, F0 is increasing, and vice versa). This
permits rewriting Eq. 2 as

gρ (ρ) =

( R
+fs/2

−fs/2
FL (f) F ∗

R

`
2+ρf

´
df ρ < 0R

+fs/2

−fs/2
FL

`
2−ρf

´
F ∗

R (f) df ρ ≥ 0
(4)

In practice, we compute Eq. 4 using magnitude spectra, rather
than complex spectra. |FL| and |FR| represent discrete transforms
(of lengthN = 512, over [-256,255]), in general necessitating inter-
polation, |F̃

`
2±ρk

´
| = β |F

ˆ
�2±ρk�

˜
| + (1 − β) |F

ˆ
�2±ρk�

˜
|,

where β =
˛̨
�2±ρk� − 2±ρk

˛̨
. We sample the transform at the eq-

uispaced locations ρ = 4r/N , −N/2 ≤ r < N/2, representing a
range of [−2, +2) octaves, to yield

gρ [r]=

8<
:

PN/2

k=−N/2+1
|F̃L

“
2−4r/Nk

”
| |F ∗

R [k] | r ≥ 0PN/2

k=−N/2+1
|FL [k] | |F̃ ∗

R

“
2+4r/Nk

”
| r < 0

(5)

For subsequent modeling, we normalize Eq. 5 by the square root ofP
|FL|

2 ·
P

|FR|
2, with either |FL| or |FR| dilated as in Eq. 5, to

yield an energy-independent vector representation.

6. EXPERIMENTS AND DISCUSSION

We now present several experiments in which, given the 500 ms
preceding an EOT at t, we attempt to predict whether Lt is SC or
¬SC. gρ [r] is computed every 8 ms. Each gρ [r] is passed through
a filterbank which attempts to capture meaningful prosodic varia-
tion. Our previous work [5] has shown falling (and low) intonation
patterns before pauses to be a predictor of SC and flat intonation
patterns (in the middle of a speaker’s range) to be a strong predic-
tor of ¬SC. The filterbank therefore contains a conservative trape-
zoidal filter for perceptually “flat” pitch [10], with a half-max span of
(−0.19, +0.19) semitones/2T0, and two trapezoidal filters for per-
ceptually “changing” pitch, with half-max spans of (−0.66,−0.09)
and (+0.09, +0.66) semitones/2T0. We also include two rectangu-
lar filters with spans of (−2,−1) and (+1, +2) octaves/2T0, as we
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have observed that unvoiced frames have flat rather than decaying
tails. This filterbank reduces the input space to 5 scalars per frame.

Wemodel each of the SC and¬SC classes with a fully-connected
hidden Markov model (HMM) of 4 states with one Gaussian per
state, using Kevin Murphy’s HMM Toolbox1. For development,
the models are trained on the DEVSET using four-fold leave-one-
out validation. We repeat this ten times, and average over the log-
likelihoods obtained, before applying log-likelihood ratio selection.
For final evaluation, the models are trained on the whole DEVSET,
and applied to the EOTs in the EVALSET.
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Fig. 7. ROC curves for systems EOT and EOV (cf. Section 6).

In Fig. 7, we report the performance of the described system,
labeled “EOT”, on the EVALSET. For contrast, we trained a sec-
ond system (“EOV” in the figure) not on the last 500 ms preceeding
each EOT, but on the 500 ms preceeding the last voiced frame prior
to each EOT, as we had noted that some of our automatically de-
tected EOTs contained a significant post-speech interval of exhala-
tion. Voicing was determined using the Snack Sound Toolkit2. Fig. 7
also shows the appropriateness and automatic baselines.

It is apparent from the figure that our new speaker change predic-
tion algorithm is significantly better than random, everywhere; this
appears to validate our novel representation of delta pitch, our filter-
bank design, as well as the rudimentary HMM structure we selected.
Furthermore, the “EOT” system replicates the performance of our
AGGRESSIVE baseline and the “EOV” system comes within 1%abs
of the NONAGGRESSIVE baseline, even though both baselines relied
not only on pitch change but also location within pitch range, which
neither new system accounts for. Furthermore, the “EOV” system
performs close to human appropriateness judgment in the high preci-
sion range. Finally, similarity between the “EOT” and “EOV” curves
shows that “EOT” performance is quite robust to SAD errors.

The experiments presented here validate the applicability of our
approach on a single task, using one corpus in one language, and one
side of the dialogue. A cross-domain/corpus evaluation is needed to
establish the extent to which the approach generalizes. Our imme-
diate future goal will be the manual inspection of what the learned
models actually capture, and whether that corroborates existing stud-
ies of human speech. The current work also points to several new
avenues of inquery. Due to the low cost of labeling, larger amounts
of data can be used to augment the robustness of the current mod-
els. In conjunction, experiments like those presented can be used to
optimize both model topologies and filterbank structures, in order to

1http://www.cs.ubc.ca/˜murphyk/Software/HMM/hmm.html
2http://www.speech.kth.se/snack/

more accurately capture what humans may perceive as salient.

7. CONCLUSIONS

We have derived a continuous vector representation of instantaneous
variation in fundamental frequency, and showed that it is compati-
ble with standard acoustic modeling techniques as used in SAD and
ASR. In spite of label mismatch, we have shown that when trained
only towards what actually occurs in human-human conversations,
our models successfully discard a high number of locations to speak
which are judged inappropriate by humans, in cases matching human
performance. We have replicated, to within 1%, the performance of
a hand-crafted baseline, without the use of pitch range information,
and with the implicit benefit of run-time control of the recall or pre-
cision rates; at the studied delay of only 300 ms, our system sig-
nificantly outperforms current state-of-the-art pause-only systems.
Finally, as its training completely obviates the need for human la-
beling, the system has high potential for performance improvement
due to larger training corpora, and important scope for data-driven
prosodic model construction in dialogue systems and other domains.
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