WHERE DO THE WORDS COME FROM?
LEARNING MODELS FOR WORD CHOICE AND ORDERING FROM SPOKEN DIALOG
CORPORA

Amanda J. Stent, Srinivas Bangalore, Giuseppe Di Fabbrizio

AT&T Labs — Research
180 Park Ave,
Florham Park, NJ 07932, USA
{stent,srini,pino }@research.att.com

ABSTRACT

Most existing generation systems for spoken dialog require the sys-
tem engineer to specify by hand the words to be used in system
prompts. However, the existence of corpora of spoken dialog makes
it possible to acquire the words and structure of system prompts au-
tomatically. In this paper, we construct statistical models for generat-
ing system prompts, both for word choice and for word ordering. We
evaluate these models using a human-computer dialog multicorpus
and a human-human dialog corpus. Our results show that statistical
models for word choice can work well, while more work is needed
on statistical models for word ordering.

Index Terms— language generation, spoken dialog systems,
natural language interfaces, machine learning

1. INTRODUCTION

Spoken dialog systems use one of two approaches to generation of
system prompts: template-based generation (e.g. [1, 2, 3, 4]), or
spoken language generation [5, 6, 7]. A template-based generator
typically contains a set of triples of the form {dialog act, content con-
straints, response template}. Each response template is a string, po-
tentially containing gaps where named entities, numbers, and dates
can be filled in. At run time, the generator selects a template to in-
stantiate based on the input dialog act and content. By contrast, a
spoken language generator is a pipeline of components that gener-
ates system prompts and presentations from first principles. A typi-
cal spoken language generator contains a content planner (selecting
content from a database), a text planner (that arranges the content us-
ing a model of discourse), a sentence planner (which assigns content
to sentential units, inserts discourse cues and may perform referring
expression generation), and a surface realizer (which structures each
sentence, ordering the words it contains and inserting function words
if necessary, and performs morphological assignment) [6].

In both generation approaches, the task of selecting words falls
to the system engineer. In a template-based generator, word choice is
part of template construction. In a spoken language generator, word
choice is split between the sentence planner and surface realizer; typ-
ically, the sentence planner uses templates or rules to select content
words and perform referring expression generation, while the surface
realizer may insert function words [7]. Because both approaches rely
on human effort for word choice, the generation system typically has
limited ability to produce variations on system prompts. Further-
more, the generation context (including previously-made decisions
about tense, verb choice, directionality of movement verbs, etc.) is

1-4244-1484-9/08/$25.00 ©2008 IEEE

5037

not taken into account during word choice or surface realization. Fi-
nally, there is little opportunity for the choice of syntactic structure
to influence the choice of words and vice versa (for example, choos-
ing a verb indicating manner of movement vs. indicating it with an
adverbial, as in will fly there vs. I will go by plane).

In this paper, we describe statistical models for performing word
choice and word ordering for response generation in spoken dialog
systems. We show the results of evaluations of these models on a
multicorpus of human-computer dialogs in the air travel domain and
a corpus of human-human dialogs in a catalog ordering domain. We
conclude with a discussion of our ideas for improving these models.

2. RELATED WORK

There are essentially three approaches to trainable surface realiza-
tion: two-stage surface realizers [8, 9, 10], classification-based sur-
face realizers [11, 12], and surface realizers that use probabilistic
grammars [13, 14, 15, 16]. Each type of surface realizer uses a sta-
tistical model or set of models that capture word order and syntactic
constraints (e.g. agreement). All of these surface realizers require at
least the content words for the output sentence to be included in the
input. In existing spoken language generators, this typically means
that the sentence or content planner has to select the content words
using a set of sentence or phrase templates (e.g. [7]).

[17] use reinforcement learning to select one of four hand-designed
prompts at a decision point in a call routing application. In effect,
their model selects the actual utterance for the system prompt.

In recent work [18] learn a generation lexicon and some syn-
tactic structures by mining semantically relevant sentences from a
large corpus of user reviews of restaurants and hotels. The resulting
lexicon and grammar are used to produce utterances adapted to the
reader’s or hearer’s preferences. Our models are trained on spoken
dialog rather than on text data, and so we can use features from the
dialog history to condition our choice of words and templates. We
also explore a larger range of models than [18].

3. MODELS

If W = wi,ws...,w, is the sequence of words to be generated
and H is contextual information (such as that shown in Table 1),
then we model the generation problem (shown in equation 1) as a
search problem for the best string of words (W) which maximizes
the probability P(W|H).

ICASSP 2008

[Feature type | Communicator

| CHILD

Lexical word n-grams of contextual features word n-grams of contextual features
Semantic Named entities -
Discourse Dialog act, task/subtask, conversational domain Dialog act, task/subtask
Contextual 1 to 3 previous turns by the user 1 to 3 previous turns by the customer

1 previous turn by the system 1 previous turn by the agent
previous utterances in current system turn previous utterances in current system turn
Table 1. Features used to train classifiers
4. DATA
W* = argmaz P(W|H) (1) We use two corpora: the publicly available 648-dialog Communi-
w

Because there are lots of possible strings of words, we cluster the
word strings (C). We investigate a few methods for forming clusters
that combine different degrees of word choice and ordering. In the
first method, utterance-string [US], we group utterances that have
the same content words and the same order of words into a cluster.
In the second method, utterance-bag [UB], we disregard the or-
der of words and group utterances that have the same content words
into a cluster. These two methods of clustering do not generalize
over domain entities (such as names of cities in the air travel do-
main). We replace named entities in utterances to get templates, and
then cluster the templates with (template-string [TS]) or without
(template-bag [TB]) the order information among tokens. Finally,
(dialogact*subtask [DA*ST]), we use the dialog act and subtask to
cluster utterances, since the language generator would typically be
provided with this information in a dialog system.

For the three models utterance-string, template-string and dialo-
gact*subtask we approximate equation 1 as equation 2. We then
approximate this by selecting the best cluster C* and searching for
the member in the cluster that maximizes P(W|C*, H) (equation
3). We estimate P(C|H) and P(W|C™, H) using maximum en-
tropy models. For P(C|H) we train a one-vs-other binary classifier
with the features listed in Table 1 and using the LLAMA toolkit [19].
For P(W|C*, H), we use the same procedure but add the predicted
cluster as a feature.

= argmax Z P(C|H)«P(W|C, H))
w c
~ argmax P(W|C* H) (3)
w
where C* = argmazx P(C|H) 4)
c

For models utterance-bag and template-bag, we compute P(C|H)
as described above. Then we use an utterance reconstruction model
as specified in equation 6. The tokens in the identified cluster are
permuted (II(C™*)) and the likelihood for each permutation is com-
puted using an n-gram model. The string with the highest likelihood
is returned as the result of generation.

W* = argmax P(W) (5

WEI(C*)

) T} Plwilwio, ..., wi—nt1)(6)

argmazx
WIW ... W x| eI(c*

5038

cator dialog act tagged corpus, and CHILD, a proprietary corpus of
832 customer service dialogs in a catalog ordering domain. Both
corpora contain highly-structured task-oriented dialogs. The Com-
municator dialogs are human-computer dialogs from nine different
systems, while CHILD consists of human-human dialogs with mul-
tiple different agents. Communicator is annotated using DATE [20]
for task/subtask, dialog acts and named entities, permitting us to con-
struct utterance, template and dialogact*subtask models. CHILD is
annotated for task/subtask, permitting us to construct utterance and
dialogact*subtask models. In both corpora, we used the human tran-
scriptions of the system’s/agent’s utterances. For the Communica-
tor corpus, we focus on predicting the system utterances, while for
CHILD, we predict the customer service agent’s utterances.

We split the Communicator corpus along dialog lines into 80%
training data, 10% development data and 10% testing data; we split
the CHILD corpus into 10% testing data and 90% training data. Prior
to building our models, we preprocess and cluster the system’s or
agent’s utterances. We replace numbers with [number] and re-
move closed-class words (articles, prepositions and conjunctions).
For models template-bag, template-string and dialogact*subtask, we
replace named entities with their types (e.g. phoenix with [city]).
For models utterance-bag and template-bag, we sort the remaining
words in the utterance into alphabetical order. We then cluster the
utterances, templates or bags of words using string equality. We also
extract the features shown in Table 1 from each corpus (the discourse
features are not used in model dialogact*subtask).

5. RESULTS

The performance of our system is shown in Figures 1 and 2 for the
Communicator corpus and in Figures 3 and 4 for CHILD. We use
classification error rate (1-best classification) to evaluate the perfor-
mance of the cluster identification task. We use string edit distance to
evaluate the model’s performance overall'. When computing string
edit distance, we use as reference string the utterance produced by
the system/agent, with numbers replaced by [number].

Preserving the order of words in the cluster members increases
the numbers of clusters, making the cluster identification problem
slightly harder. However, this does not necessarily make the over-
all surface realization problem harder; Figure 2 shows that without
system utterances as context, performance is best for the template-
string model on Communicator, and second-best for utterance-string.
Although we could not build template-based models for CHILD (be-
cause CHILD is not annotated for domain entities), for this corpus

IThe string edit distance between two strings has value at most 1 and
at least the difference between the lengths of the two strings, so it can be
negative.

Context

1U

2U

3uU

1UNE
2U,NE
3U,NE
10,18
1U,1S,NE

Error rate
w
(&

EEEEOO000

»
o
(NN NN

DA*ST(62) TB(1369) TS(1464) UB(4706) US(4775)

Fig. 1. Classification error rates for cluster prediction (Communica-
tor). zU = features from x previous user turns; xS = features from x
previous system turns; NE = named entity features.

Context

1U

2U

3uU

1U,NE
2U,NE
3U,NE
1U,18
1U,1S,NE

o
o
|

Error rate

EEEEOO000

dadad

DA*ST TB TS uB us

Fig. 2. String edit distance results for generation on Communicator.
zU = features from z previous user turns; =S = features from x
previous system turns; NE = named entity features.

utterance-based models perform best. This is because the number
of utterances per cluster is quite small for template- and utterance-
based models compared to dialogact*subtask models, while in the
template-based models named entities are not included in the tem-
plates, further reducing the number of items per cluster.

Increasing the number of previous user utterances included in
the history decreases the classification error rate. The biggest reduc-
tion in error rate occurs when the previous system turn is taken as
a feature. For these experiments, we have used the correct previous
system utterance as a feature as opposed to the previous predicted
system utterance. However, when decoding in a dialog system, a dy-
namic programming approach would be required to get the system’s
previous utterance, which would affect performance.

Most of the clusters produced by the simple methods we use here
contain very similar sentences. For example, in the template-bag
model the cluster with words day like travel what would
you contains utterances like and what day would you like to travel
on and and what day would you like to travel. However, the clusters
produced for model dialog act*subtask for Communicator contain
sentences with quite different structure and semantics. For exam-
ple, the cluster request_info x depart_arrive_date con-
tains the sentence and what day would you like to travel on, as
well as sentences like and departing [city] on what day and and
on what date didja wanna fly, more general sentences like and what
month was that, and error-handling utterances like but i didn 't catch
the date could you repeat it please and you must specify a date.
Interestingly, the clusters for model dialogact*subtask for CHILD

5039

— Context

O 1
o 2u
@ 3U
| 1U,18

Error rate
w
o

DA*ST(618) UB(14601) US(14743)

Fig. 3. Classification error rates for cluster prediction on CHILD. zU
= features from x previous user turns; xS = features from z previous
system turns; NE = named entity features.

04 —

03 — Context
02 — O 1
O 2u
® | 1U,1S
5 -0.1 —
5 -02 -
-03 —
_04 —
-05 —

08 T T 1

DA*ST uB us

Fig. 4. String edit distance results for generation on CHILD. 2U =
features from x previous user turns; xS = features from = previous
system turns; NE = named entity features.

contain utterances that are much more similar in meaning, because
CHILD is labeled with a more fine-grained set of dialog act tags. For
example, there are separate clusters for Request (Address)
x contact-info and Request (Address) x shipping
-address. This also means that there are about 10 times as many
clusters in this model for CHILD than for Communicator. Ideally,
we would like a cluster construction method that achieves maximum
separability in the partitioning of utterances into clusters.

There are two ways generation errors can occur in our system:
the wrong cluster can be chosen, or a string can be chosen from the
cluster that is not similar to the reference string. Because of the
nature of our clusters, the utterances produced by the -string and
-bag models generally have very similar import to the reference ut-
terances. For example, these utterances from CHILD are similar in
meaning although different in wording: your phone number with the
area code [number] and may i have your home telephone number
with area code please. This tends to be true when comparing gen-
erated and reference strings from the Communicator corpus even if
they belong to different clusters and/or score low using simple string
accuracy. For example, both hello and hi welcome to SRI’s com-
municator demonstration are greetings, but they belong to different
template clusters in the Communicator template-string model. How-
ever, for CHILD it is not as true that sentences from different clusters
tend to have similar meanings. It is unfortunately impossible when
string edit distance alone to adequately account for meaning simi-
larity between a pair of utterances. In future work, we will examine
improved evaluation metrics for the generation task.

Sometimes, the generated sentence seems more helpful or less
awkward than the reference sentence. For example, compare from
which city would you like to fly to salt lake city (reference) to where
are you departing from (generated). However, the utterances gen-
erated by the dialogact*subtask model frequently could not replace
the reference utterances even if they come from the same cluster. For
example, from Communicator compare what time would you like to
leave on tuesday october seventeenth (reference) to what time do you
want to leave anchorage (generated); and from CHILD compare and
i thank you very much (reference) to when you pick up your order you
will be asked to show the credit card used for payment (generated).

Communicator is a corpus of human-computer dialogs; we have
shown that we can, in a sense, reproduce a template-based surface
realizer from data and use data from multiple systems to introduce
more variety into a template-based surface realizer. However, a much
more interesting question is whether we can induce a surface realizer
from human-human dialogs. Figures 3 and 4 show small differences
between performance of the utterance-based models for CHILD. We
think this is due to data sparsity — a large number of clusters with
few elements in each cluster, and fewer utterances in both test and
training data. If we build template-based models in this domain, we
expect that we will see a big improvement in performance.

6. CONCLUSIONS

In this paper, we propose a statistical two-stage approach to response
generation for dialog. The first stage is mainly concerned with word
choice, and the second stage with word order. Both stages can be
trained from spoken dialog corpora. We have conducted an evalua-
tion of our model using human-human and human-computer dialogs,
and shown that our approach is feasible for word choice.

We are currently exploring additional features, improved mod-
els, and improved evaluation metrics for this task. We plan to repeat
our experiments with domain entity features after annotating CHILD
for domain entities, as well as adding syntactic features such as tense
and verb type. We are planning to explore more complex clustering
mechanisms for utterances, including sentence simplification, partial
parsing and LSA. Finally, because no existing automatic evaluation
metric for surface realization performs well in the presence of varia-
tion in lexical choice [21, 22], we plan a human evaluation to better
measure where our models are succeeding and failing.

7. REFERENCES

[1] S. Channarukul, S. McRoy, and S. Ali, “YAG: A template-
based text realization system for dialog,” The International
Journal of Uncertainty, Fuzziness, and Knowledge-based Sys-
tems, vol. 9, no. 6, 2001.

[2] M. Johnston et al., “MATCH: An architecture for multimodal
dialogue systems,” in Proceedings of ACL 2001, 2001.

[3] A. Stent, “Content planning and generation in continuous-
speech spoken dialog systems,” in Proceedings of the KI’99
Workshop “May I Speak Freely”, 1999.

[4] M. Walker et al., “Generation and evaluation of user tailored
responses in multimodal dialogue,” Cognitive Science, vol. 28,
2004.

[5] J. Chen, S. Bangalore, O. Rambow, and M. Walker, “Towards
automatic generation of natural language generation systems,”
in Proceedings of COLING 2002, 2002.

5040

(6]

(7]

—
o]
—_

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(21]

(22]

0. Rambow, S. Bangalore, and M. Walker, “Natural language
generation in dialog systems,” in Proceedings of HLT 2001,
2001.

M. Walker, A. Stent, F. Mairesse, and R. Prasad, “Individ-
ual and domain adaptation in sentence planning for dialogue,”
Journal of Artificial Intelligence Research, To appear.

I. Langkilde-Geary, “An empirical verification of coverage and
correctness for a general-purpose sentence generator,” in Pro-
ceedings of INLG 2002, 2002.

N. Chambers, “Real-time stochastic language generation for
dialogue systems,” in Proceedings of ENLG 2005, 2005.

A. Oh and A. Rudnicky, “Stochastic language generation for
spoken dialogue systems,” in Proceedings of the ANLP/NAACL
Workshop on Conversational Systems, 2000.

S. Corston-Oliver et al., “An overview of Amalgam: A
machine-learned generation module,” in Proceedings of INLG
2002, 2002.

T. Marciniak and M. Strube, “Classification-based generation
using TAG,” in Proceedings of INLG 2004, 2004.

S. Bangalore and O. Rambow, “Exploiting a probabilistic hi-
erarchical model for generation,” in Proceedings of COLING
2000, 2000.

H. Zhong and A. Stent, “Building surface realizers automati-
cally from corpora,” in Proceedings of the 2005 Workshop on
Using Corpora in Natural Language Generation, 2005.

A. Belz, “Probabilistic generation of weather forecast texts,”
in Proceedings of NAACL HLT 2007, 2007.

I. Langkilde-Geary, “An exploratory application of constraint
optimization in Mozart to probabilistic natural language pro-
cessing,” in Proceedings of CSLP 2004, 2004.

C. Lewis and G. Di Fabbrizio, ‘“Prompt selection with rein-
forcement learning in an AT&T call routing application,” in
Proceedings of ICSLP 2006, 2006.

R. Higashinaka, M. Walker, and R. Prasad, “Learning to gen-
erate naturalistic utterances using reviews in spoken dialogue
systems,” ACM Transactions on Speech and Language Pro-
cessing, vol. In press, 2007.

P. Haffner, “Scaling large margin classifiers for spoken lan-
guage understanding,” Speech Communication, vol. 48, no. iv,
2006.

W. Hastie, H. Prasad, and R. Walker, “Automatic evaluation:
Using a date dialogue act tagger for user satisfaction and task
completion prediction,” in /n Proc. of LREC, 2002.

A. Belz and E. Reiter, “Comparing automatic and human eval-
uation of NLG systems,” in Proceedings of EACL 2006, 2006.

A. Stent, M. Marge, and M. Singhai, “Evaluating evaluation
methods for generation in the presence of variation,” in Pro-
ceedings of CICLing 2005, 2005.

