
MODELING THE INTONATION OF DISCOURSE SEGMENTS FOR IMPROVED ONLINE
DIALOG ACT TAGGING

Vivek Kumar Rangarajan Sridhar, Shrikanth Narayanan

Speech Analysis and Interpretation Laboratory
University of Southern California
Viterbi School of Engineering

vrangara@usc.edu, shri@sipi.usc.edu

Srinivas Bangalore

AT&T Labs - Research
180 Park Avenue

Florham Park, NJ 07932, U.S.A.
srini@research.att.com

ABSTRACT
Prosody is an important cue for identifying dialog acts. In
this paper, we show that modeling the sequence of acoustic-
prosodic values as n-gram features with a maximum entropy
model for dialog act (DA) tagging can perform better than
conventional approaches that use coarse representation of the
prosodic contour through acoustic correlates of prosody. We
also propose a discriminative framework that exploits preced-
ing context in the form of lexical and prosodic cues from pre-
vious discourse segments. Such a scheme facilitates online
DA tagging and offers robustness in the decoding process, un-
like greedy decoding schemes that can potentially propagate
errors. Using only lexical and prosodic cues from 3 previous
utterances, we achieve a DA tagging accuracy of 72% com-
pared to the best case scenario with accurate knowledge of
previous DA tag, which results in 74% accuracy.
Index Terms— dialog act tagging, prosody, maximum

entropy model, discriminative modeling, discourse context.

1. INTRODUCTION

In both human-to-human and human-computer speech com-
munication, identifying whether an utterance is a statement,
question, greeting, etc. is integral to understanding and pro-
ducing natural dialog. Dialog acts [1] are labels that represent
communicative acts in a conversation or dialog. Such a rep-
resentation can be useful in systems that require automatic
interpretation of discourse to facilitate a meaningful response
or reaction.
Automatic cue-based identi cation of dialog acts exploits

multiple knowledge sources in the form of lexical, syntactic,
prosodic and discourse structure cues. These cues have been
modeled using stochastic models such as n-gram language
models, hidden Markov models, neural networks, fuzzy sys-
tems and maximum entropy models. Conventional dialog act
tagging systems rely on the words and syntax of utterances.
However, in most applications that require front-end speech
recognition, the lexical information obtained after decoding
is typically noisy due to recognition errors. Moreover, some
utterances are inherently ambiguous based on lexical infor-
mation alone. For example, “okay” can be used in the context

of a statement, question or acknowledgment [2].

While lexical information is a strong cue to DA identity,
the prosodic information contained in the speech signal can
provide another rich source of complementary information.
In languages such as English and Spanish, discourse functions
are characterized by distinct intonation patterns [3]. These in-
tonation patterns can either be nal f0 contour movements or
characteristic global shapes of the pitch contour. For example,
yes-no questions in English show a rising f0 contour at the end
and wh- questions typically show a nal falling pitch. Model-
ing the intonation pattern can thus be useful in discriminating
sentence types. Previous work on exploiting intonation for
DA tagging has mainly been through the use of representative
statistics of the raw or normalized pitch contour, duration and
energy such as mean, standard deviation, slope, etc. [4, 5].
However, these acoustic correlates of prosody provide only
a coarse summary of the macroscopic prosodic contour and
hence may not exploit the prosodic pro le completely. In this
work, we exploit the prosodic contour by extracting n-gram
features from the acoustic-prosodic sequence. The n-gram
feature representation is shown to perform better in compari-
son with the approach using acoustic correlates of prosody.

We also present a discriminatively trained maximum en-
tropy modeling framework that is suitable for online classi-
cation of DAs. Traditional DA systems typically combine
the lexical and prosodic features in a HMM framework with
a Markovian discourse grammar [4, 6]. The HMM represen-
tation facilitates optimal decoding through the Viterbi algo-
rithm. However, such an approach limits DA classi cation
to of ine processing, as it uses the entire conversation during
decoding. Even though this drawback can be overcome by
using a greedy decoding approach, the resultant decoding is
very sensitive to noisy input and may cause error propagation.
In contrast, our approach uses contextual features captured in
the form of just lexical and prosodic cues from previous utter-
ances. Such a scheme is computationally inexpensive and fa-
cilitates robust online decoding that can be performed along-
side with automatic speech recognition. We evaluate the pro-
posed framework in light of the aforementioned objectives,
by testing on the Switchboard DAMSL [6] corpus.
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2. DATA

The Switchboard-DAMSL (SWBD-DAMSL) corpus consists
of 1155 dialogs and 218,898 utterances from the Switchboard
corpus of telephone conversations, tagged with discourse la-
bels from a shallow discourse tagset. The original tagset of
375 unique tags was clustered to obtain 42 dialog tags as
in [6]. A set of 173 dialogs, selected at random was used for
testing. The test set consisted of 29869 discourse segments.
The experiments were performed on the 42 tag vocabulary as
well as a simpli ed tagset consisting of 7 tags. We grouped
the 42 tags into 7 disjoint classes, based on the frequency of
the classes and grouped the remaining classes into an “Other”
category constituting less than 3% of the entire data. This
grouping is similar to that presented in [5]. Such a simpli ed
grouping is more generic and hence useful in speech appli-
cations that require only a coarse level of DA representation.
It can also offer insights into common misclassi cations en-
countered in the DA system. Figure 1 shows the distribution
of the simpli ed tagset.
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Fig. 1. The distribution of utterances for 7 tags in the
Switchboard-DAMSL corpus.

3. MAXIMUM ENTROPY MODEL FOR DIALOG
ACT TAGGING

We use a maximum entropy sequence tagging model for the
purpose of automatic DA tagging. We model the predic-
tion problem as a classi cation task in the following man-
ner: given a sequence of utterances ui in a dialog U =
u1, u2, · · · , uN and a dialog act vocabulary (di ε D, |D| =
K), we need to predict the best dialog act sequence D∗ =
d1, d2, · · · , dN . We approximate the string level global clas-
si cation problem, using conditional independence assump-
tions to a product of local classi cation problems as shown
in Eq.(1). The classi er is then used to assign to each word
a dialog act label conditioned on a vector of local contextual
features comprising lexical, syntactic and acoustic informa-
tion.

D∗ = arg max
D

P (D|U) ≈ arg max
D

N∏

i=1

p(di|Φ(ui)) (1)

D∗ ≈ arg max
D

N∏

i=1

p(di|Φ(W,S, A, i)) (2)

where W is the word sequence, S is the syntactic sequence
and A is the acoustic-prosodic observation for utterance ui.
To estimate the conditional distribution P (d|Φ) we use

the general technique of choosing the maximum entropy
(maxent) distribution that estimates the average of each fea-
ture over the training data. This can be written in terms of
the Gibbs distribution, parameterized with weights λl, where
l ranges over the label set and K is the size of the dialog act
vocabulary. Hence,

p(d|Φ) =
eλd.Φ

∑K
l=1 eλl.Φ

(3)

We use the machine learning toolkit LLAMA [7] to es-
timate the conditional distribution using maxent. LLAMA
encodes multiclass maxent as binary maxent to increase the
training speed and to scale to large data sets. An earlier for-
mulation of this section was presented by the authors in [8],
where the framework was tested only on true transcripts.

4. DA CLASSIFICATION USING PROSODY

Exploiting utterance level intonation characteristics in DA
tagging presumes the capability to automatically segment
the input dialog into discourse segments. However, we do
not attempt to address the problem of utterance segmenta-
tion in this paper. The utterance level segmentations for the
SWBD-DAMSL annotations were obtained from the Missis-
sippi State resegmentation of the Switchboard corpus [9]. The
obtained segmentations were checked for inconsistencies and
cleaned up further. The pitch (f0) and the RMS energy (e) of
the utterance were extracted over 10 msec frame intervals.
The pitch values in the unvoiced segments were smoothed
using linear interpolation. Both the energy and the pitch
were normalized with speaker speci c mean and variance (z-
norm). The length of the utterance was also used as a feature.
In this section, we propose a n-gram feature representa-

tion of the prosodic contour that is subsequently used within
the maxent framework for DA tagging. We also compare
the proposed maximum entropy intonation model with the
acoustic correlates representation used in previous work [5].
Our objective is to compare the different prosodic representa-
tion schemes and investigate their strengths.

4.1. Sequence model of prosody with maxent framework

We quantize the continuous acoustic-prosodic values by bin-
ning, and extract n-gram features from the resulting sequence.
Such a representation scheme differs from the approach com-
monly used in DA tagging, where representative statistics of
the prosodic contour are computed [5]. The n-gram features
derived from the pitch and energy contour are modeled using
the maxent framework described in Section 3. For this case,
Eq.(2) becomes,
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D∗ ≈ arg max
D

N∏

i=1

p(di|Φ(A, i)) = arg max
D

N∏

i=1

p(di|ai)

(4)
where ai = {a1

i , · · · , a
kui
i } is the acoustic-prosodic feature

sequence for utterance ui and the variable kui
is the number

of frames used in the analysis.
We xed the analysis window to the last 100 frames1

(kui
) of the discourse segment corresponding to 1 second.

The normalized prosodic contour was uniformly quantized
into 10 bins and bigram features2 were extracted from the se-
quence of frame level acoustic-prosodic values. Even though
the quantization is lossy, it reduces the ‘vocabulary’ of the
acoustic-prosodic features, and hence offers better estimates
of the conditional probabilities. In order to test the sensitivity
of the proposed framework to errors in utterance segmenta-
tion, we also varied the end points of the actual boundary by
±20 frames. There was no signi cant degradation in perfor-
mance for this window. However, the performance dropped
for incorrect segmentation beyond ±20 frames. Thus, the
proposed model can offer some robustness to errors in utter-
ance segmentation.

4.2. Acoustic correlates of prosody

The primary motivation for this experiment is to compare
the n-gram feature representation of the prosodic contour
with previous approaches that have used acoustic correlates
of prosody [5]. Raw or normalized acoustic correlates of
prosody refer to simple transformations of pitch, intensity
and duration extracted from the fundamental frequency (f0)
contour, energy contour and segmental duration derived from
automatic alignment, respectively. We extracted a set of 28
features from the pitch and energy contour of each utterance.
These included duration of utterance, statistics of the pitch
contour (e.g., mean and range of f0 over utterance, slope of
f0 regression line) and energy contour (e.g., mean and range
of rms energy). A decision tree classi er (J48 in WEKA
toolkit [10]) was trained on the prosodic features for DA clas-
si cation.

Prosodic representation 42 tags 7 tags
Chance (majority tag) 39.9 54.4
Acoustic correlates + decision tree 45.7 60.5
n-gram acoustic features + decision tree 52.1 66.3
n-gram acoustic features + maxent 54.4 69.4

Table 1. Accuracies (%) of DA classi cation experiments for
different prosodic representations.

We also t a decision tree to the n-gram features (pre-
sented in Section 4.1) in order to compare the n-gram feature
representation with that using acoustic correlates. The results
are presented in Table 1. Results indicate that the n-gram fea-
ture representation performs better than using acoustic corre-

1This was determined empirically by optimization on a held-out set.
2Higher order n-grams did not result in any signi cant improvement

lates, and offers an absolute improvement of 6.4% in classi-
cation accuracy. The maxent model with the n-gram fea-
tures offers further improvement compared to the decision
tree classi er. This may be attributed to the integrated feature
selection and modeling offered by the maxent framework.

5. DA TAGGING USING RECOGNIZED
TRANSCRIPTS

In most speech applications, dialog act tagging is either per-
formed in lockstep with front-end automatic speech recogni-
tion (ASR) or as a post processing step. The lexical informa-
tion at the output of ASR is typically noisy due to recogni-
tion errors. To evaluate our framework on automatic speech
recognition (ASR) output, the 29869 test utterances were de-
coded with an ASR setup. The acoustic model for rst-pass
decoding was a speaker independent model trained on 220
hours of telephone speech from the Fisher English corpus.
The language model (LM) was interpolated from the SWBD-
DAMSL training set (182K words) and Fisher English cor-
pus (1.5M words). The nal hypothesis was obtained after
speaker adaptive training using constrained maximum likeli-
hood linear regression on the rst-pass lattice. The word error
rate (WER) for the test utterances was 34.4%3. While this is
a relatively high WER, the experiment is intended to provide
insights into DA tagging on noisy text. Results in Table 2

Cues used (current utt) 42 tags 7 tags
True transcripts 69.7 81.9
Recognition output 52.3 65.7
Recognition output+acoustics 55.1 69.9

Table 2. Dialog act tagging accuracies (in %) using true and
recognized transcripts with the maximum entropy model.

show the complementarity of the information in the prosodic
stream relative to the lexical information. The sequence based
acoustic-prosodic representation with the maximum entropy
framework offers 2.8% improvement in accuracy over using
the recognized transcripts. The performance using the recog-
nition output is a function of the WER of the ASR system.
With accurate knowledge of words (true transcripts), the DA
classi cation accuracy is 69.7%.

6. DA TAGGING USING UTTERANCE HISTORY

The dialog act tags that characterize discourse segments in a
dialog are typically dependent on preceding context. This as-
pect of dialog acts is usually captured by modeling the prior
distribution of the tags as a kth order Markov process. A
HMM based representation of DA tagging, coupled with such
a discourse LM, facilitates ef cient dynamic programming to
compute the most probable DA sequence using the Viterbi
algorithm. The main drawback of such an approach is that
one has to wait for the completion of entire conversation be-
fore decoding. Thus, optimal decoding can be performed only

3The decoding was performed on all of 29K utterances for comparison
across experiments. The standard deviation of WER was 14.0%
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during of ine processing. One way to overcome this problem
is by using a greedy decoding approach that uses a discourse
LM over the predictions of DA tags at each utterance. How-
ever, such an approach is clearly suboptimal and can be fur-
ther exacerbated when applied to noisy ASR output.
In contrast to the above methods, we argue for a DA tag-

ging model that uses context history in the form of n-gram
lexical and prosodic features from the previous utterances.
Our objective is to approximate discourse context informa-
tion indirectly using acoustic and lexical cues. Such a scheme
facilitates online DA tagging and consequently, the decod-
ing can be performed incrementally during automatic speech
recognition. Even though the proposed scheme may still be
suboptimal, it offers robustness in the decoding process, un-
like greedy decoding schemes that can potentially propagate
errors. We compare the proposed use of “static” contextual
features with the scenario where one has accurate knowledge
of previous DA tag. Such a comparison illustrates the gap
between the best case scenario (optimal decoding with a bi-
gram discourse LM using the Viterbi algorithm, will be less
than or equal to this performance; the greedy approach maybe
be worse) and the performance that can be achieved by using
only the lexical and prosodic cues from previous utterances.
The results are presented in Table 3.

Cues used 42 tags 7 tags
True transcripts + 1 prev DA tag 74.4 83.1
True transcripts + 3 prev utterances 72.0 82.4
Recognition output + 1 prev DA tag 59.7 73.9
Recognition output + 3 prev utterances 56.2 70.8

Table 3. Dialog act tagging accuracies (in %) using preceding
context. Both lexical and prosodic information of utterances
were considered.

The best case scenario, assuming accurate knowledge of
words and the previous dialog act tag (bigram discourse con-
text), results in a DA classi cation accuracy of 74.4% (see Ta-
ble 3). On the other hand, using only the lexical and prosodic
information from 1 previous utterance, yields 71.2%. The
use of only static features from previous utterances is com-
putationally inexpensive and the framework is more robust
compared to using greedy DA predictions for each utterance.
Adding context from 3 previous utterances4 results in a classi-
cation accuracy of 72%. Similar trends can be observed for
DA classi cation using the ASR output. It is interesting to ob-
serve that there is an accuracy drop of only 3-4% when using
context in terms of lexical and prosodic content from previ-
ous utterances, compared to accurate (oracle) knowledge of
previous DA.

7. CONCLUSION AND FUTUREWORK
We presented a maximum entropy intonation model for DA
tagging that uses n-gram features of the normalized and quan-
tized prosodic contour. We showed that the proposed n-gram

4Context beyond 3 previous utterances did not result in any signi cant
improvement.

feature representation is better for exploiting the prosodic
characteristics of discourse segments in comparison with
acoustic correlates of prosody.
We also showed that our discriminative model can be used

for online tagging of DA tags in speech applications. In-
stead of using predicted DA information, our framework uses
context captured in terms of lexical and prosodic cues from
preceding utterances. The use of recognition output reduces
the DA classi cation accuracy as expected, due to the rel-
atively high WER for spontaneous speech recognition such
as the Switchboard dialogs considered in our experiments.
The maximum entropy intonation model still provides an im-
provement over using the hypothesized word sequence alone.
The methods and algorithms presented in this work were su-
pervised. We plan to investigate unsupervised classi cation
of dialog acts with the help of intonation as part of our fu-
ture work. We also plan to use our models in a speech-
to-speech translation framework by tagging the source lan-
guage discourse segments with DA tags for facilitating en-
riched speech-to-speech translation.
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