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ABSTRACT

Robust Spoken Language Understanding (SLU) is a key
component of spoken dialogue systems. Recent statistical
approaches to this problem require additional resources (e.g.
gazetteers, grammars, syntactic treebanks) which are expen-
sive and time-consuming to produce and maintain. However,
simple datasets annotated only with slot-values are commonly
used in dialogue systems development, and are easy to collect,
automatically annotate, and update. We show that it is possi-
ble to reach state-of-the-art performance using minimal addi-
tional resources, by using Markov Logic Networks (MLNs).
We also show that performance can be further improved by
exploiting long distance dependencies between slot-values.
For example, by representing such features in MLNs, but with-
out using a gazetteer, we outperform the Hidden Vector State
(HVS) model of He and Young 2006 (1.26% improvement, a
13% error reduction).

Index Terms— Natural language interfaces, Adaptive sys-
tems, Speech processing, Cooperative systems

1. INTRODUCTION

Spoken LanguageUnderstanding (SLU) systems produce rep-
resentations of the meaning of utterances recognised by auto-
matic speech recognition (ASR) modules of spoken dialogue
systems. After SLU the dialogue manager module interprets
the representation in context and produces a response for in-
teraction with the user. Recently, statistical approaches have
been explored for this task [1, 2, 3, 4], rather than more brittle
and labour-intensive grammar-based frameworks .

For rapid development of robust dialogue systems it is im-
portant that SLU components are:

• accurate and robust,

• easy to build, update, and maintain.
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In this paper we show how to meet both of these requirements
in a system with state-of-the-art performance. In particular
we study scenarios where dialogue system developers need to
create SLU components from limited resources (e.g. a slot-
value annotated corpus), and compare this with cases where
extra information is available. In this case, the meaning of an
utterance is presented as a set of slot values, as is commonly
used in spoken dialogue systems e.g. [2]. Table 1 presents an
example of slot-values as semantic representation1.

USER:what ights are there arriving in Chicago on conti-
nental airlines after 11 pm
GOAL =FLIGHT
TOLOC.CITY NAME =Chicago
AIRLINE NAME =continental airlines
ARRIV E TIME.T IME RELATIV E =after
ARRIV E TIME.T IME =n2300

Table 1. Example of slot-values as a semantic representation.

The SLU task is then to create a labelling of slot-values
for each word of a recognised user utterance. In particular,
we explore the use of long distance dependency features for
statistical SLU. Typically, statistical SLU approaches produce
a labelling based on observable information at a speci c point
of the utterance and the n previous labels. In the case of n = 0
we have a simple classi er. For n > 0 we have a linear chain
model which uses an nth order Markov assumption. In this
work, we also explore the use of more complex relations in
order to capture long distance dependencies within a Markov
Logic Framework.

2. PREVIOUS WORK

There is renewed interest in statistical SLU given new state of
the art techniques in the eld. [1] proposed a parsing frame-
work for the SLU task. However, this approach requires a cor-

1From the ATIS 3 corpus [5].
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pus labelled with semantically augmented syntactic trees. [2]
presents the Hidden Vector State model which can be thought
as an extended HMM which can handle stacks of labels in-
stead of single labels, but additionally uses a gazetteer. Two
very recent state of the art results are presented in [3, 4]. Both
approaches tackle the problem as a parsing problem and they
learn a weighted grammar which is used to parse utterances.
In both cases, a corpus annotated with logical forms is re-
quired while syntactic trees are handled as hidden variables.
[6] describes a mixed model for SLU where a statistical clas-
si er identi es user intentions and a rule-based grammar de-
tects the named entities (a shallow semantic representation
similar to slot-values). However, here a rule-based grammar
has to be developed for each new domain, in addition to a
labelling of the corpus with intentions.

As can be appreciated in the results of approaches which
handle SLU as a parsing task, the inclusion of long distance
dependencies has been helpful. However, such approaches
require a corpus annotated with full logical forms. Such a
corpus is an expensive resource during the development of a
dialogue system, and is costly to produce, maintain, and up-
date. In contrast, we constrain our work to use only a slot-
value annotated corpus, which is easier to annotate and main-
tain, since slot-values are less complex structures than logical
forms. Slot-value labellings are also widely used in dialogue
systems development.

To handle long distance dependencies and capture (to some
extent) the advantages of parsing approaches statistically we
use densely connected sequential Markov Networks. Markov
Logic Networks (MLNs)[7] provide a compact way of de n-
ing such networks and allow ef cient inference and training.
Here rst order logic (FOL) formulae with associated weights
are used as templates for loglinear models. Using Markov
Logic as modelling framework not only allows us to incorpo-
rate a large class of global dependencies into our models in
order to improve accuracy, it also ensures that the underlying
technology is widely accessible and can be easily reused in
different contexts. Freely available toolkits such as [8, 9] pro-
vide ef cient means of training and inference in such models.

3. THE CORPUS

For our experiments we use the Air Travel Information Sys-
tem (ATIS, [5]) corpora. These corpora are in the domain
of ight booking and car rental. In particular, we used the
extended version created by [2]. This version is composed
of slot-value labellings of the ATIS-2 and ATIS-3 training
sets (4978 utterances), and the ATIS-3 NOV 93 testing set
(448 utterances). To select features, perform error analysis,
and decide the number of iterations in the implementation
of the MLNs we split the corpus in to training and test sets
(4582/396 utterances).

We have also used the OVIS [1] corpus with similar re-
sults to those presented here.

4. THE MLN MODELS

We approach the SLU task using two models. One for the
goal slot which depends on the whole utterance, and the other
for the argument slots (i.e., slots which have a word of the ut-
terance as argument). Figure 1 presents the Graphical Model
for the goal. There are 22 possible labels for the goal (e.g.,
FLIGHT, GROUND SERVICE, AIRFARE). For the case of
the argument slot we treat the slot as single label. Figure 2
presents the Graphical Model for the slot arguments model.
There are 112 possible labels for the slot arguments.

Fig. 1. Example using Local Features

Fig. 2. Model for slots as a single label

4.1. Local Features

So far, the models of gures 1 and 2 employ local features. In
these gures the hidden variables are connected only to ob-
servable variables. In particular, we can de ne features based
on the current word and its context, for instance: Orthogra-
phy, membership of a type (e.g., gazetteers, numbers), or ex-
tra information (e.g., Part-of-Speech tags).

In the approach presented here, we show how to perform
accurate SLU without using features requiring additional de-
velopment effort, such as a gazetteer, or POS tagging. We
use only standard orthography and properties of a slot-value-
labelled corpus.

4.2. Adding Markov assumptions

Figure 3 shows the model with the inclusion of rst and sec-
ond order Markov assumptions for the argument slots, which
only involves hidden variables. In this case, a feature is de-
ned using only hidden variables, and these features are straight-

forward to de ne using the MLN.
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Fig. 3. 1st and 2nd order Markov assumptions

Figure 4 shows the de nition of these relations using a
FOL formulae. For the case of the 1st order Markov assump-
tion the formula says that there is a relation for every pair of
argument slots which are separated by one position. This is
useful for example in capturing a pattern of slots about time,
which often appear together. This can be seen it the example
of table 1.

∀Slot s, Slot sprev, P osition p.slot argument(p, s) ∧
slot argument(p− 1, sprev)

Fig. 4. Rule for 1st order Markov assumption

4.3. Global Features

To capture long distance dependencies between the slots we
use global features. Figure 5 shows some of the relations we
can de ne. Figure 5.A shows a relation between two con-
secutive labels and a previous label, and 5.B shows a rela-
tion between a label and any other previous label which is
not otherwise considered by the Markov assumptions of sec-
tion 4.2. The rst relation corresponds to a common pattern
where two consecutive argument slots depend on their con-
text. In the case of our example, the fact that the time slots
are ARRIVE is linked to the type of slot assigned to Chicago
(i.e., TOLOC.city name). The second relation links the ar-
gument slots with the rest of the slots, in this case we look to
avoid cases where an argument slot such as TOLOC.city name
appears more than once in a sentence.

Fig. 5. Examples of global features

4.4. Training and Inference

To learn the weights of the MLN we use single-best MIRA[10],
a discriminative Online Learner. For Maximum A Posteri-
ori Inference at test time and during Online Learning we em-
ploy a Cutting Plane Method that incrementally instantiates

and solves Integer Linear Programs representing the Markov
Network[11]. For a large class of MLNs (in particular the
ones we train in this work) this yields exact and ef cient in-
ference.

5. EXPERIMENTS: METHOD AND RESULTS

We developed two sets of experiments. The rst one aims
to establish the empirical superiority of a local MLN model
over a MaxEnt model, thus showing that a local MLN model
reaches suitable baseline performance. We choose MaxEnt
as a baseline because a straight-forward implementation of
the task provides comparable results to those reported by [2].
This was trained using minimal resources and two classi ers,
one for the goal and one for the argument slot. Features for
each utterance help to identify the goal, while features from
a word and its context help to identify the argument slots. A
similar set-up was tried with implementations of Conditional
Random Fields but the training times were from 3 to 5 days
making experimentation with different features impractical.
For the second set of experiments we increase the complexity
of the model. In both sets of experiments we constrained the
models to use minimum resources as discussed above.

For both models in the rst set of experiments, we use the
same local features: Orthography of the current word, the two
previous words and the two following words. We also use a
feature indicating the presence of the words: arrive, arriving,
leave and leaving. The MLNlocal model corresponds to a
local model where the argument slots were considered as a
unique label. This is directly comparable with the MaxEnt
model.

For the second set of experiments we create the model
MLNglobal by adding rst and second Markov order assump-
tions and the global features shown in 5.B to the local model.

To evaluate the models we use two measurements: Global
and Exact match scores as presented in [2, 3]. The global
scores measure precision, recall and F1-score for recovering
slot-values in the whole experiment. The exact match score
measures precision, recall and F1-scores for recovering the
exact set of slot-values for each utterance.

5.1. Results: MaxEnt and MLN

For our rst set of experiments we obtain the results presented
in table 2. Here, MLNlocal performs better than the MaxEnt
model. Statistical signi cance of MLNlocal against the Max-
Ent model for both precision and recall is at ρ < 0.05.

5.2. Results: Global MLN vs. Hidden Vector State model

For the second set of experiments we obtained the results pre-
sented in table 3. In this table we include the results presented
in [2] under the label HVS, although the techniques are not
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Precision Recall F1-score

MaxEnt Global 89.45% 88.82% 89.13%
Exact 66.21% 64.95% 65.57%

MLNlocal Global 91.46% 91.30% 91.38%
Exact 72.64% 70.54% 71.57%

Table 2. Baselines: MaxEnt versus local MLN

directly comparable since the HVS model uses additional in-
formation in a gazetteer as a preprocessing step. We can see
that both the MLNlocal and MLNglobal scores outperform
the HVS model, based on only a slot-value annotated cor-
pus. Note that Exact match and Precision/Recall scores are
not available for the HVS system. We also measured the sta-
tistical signi cance of MLNglobal compared with MLNlocal

and for both precision and recall we have ρ < 0.05.

Precision Recall F1-score

MLNglobal Global 93.43% 89.77% 91.56%
Exact 72.04% 67.86% 69.89%

HVS Global N/A N/A 90.3%

Table 3. Global MLN vs. HVS model (He and Young 2006)

This shows that the extra relations de ned in the global
MLN provide increased performance whilst also using fewer
development resources than HVS [2]. We note that the global
precision of the global MLN is higher than that of the local
model, although the exact match scores are slightly worse.
This is due to data sparsity. Global features which were not
seen in the corpus will be penalized. This strategy produces
better argument slots (high precision), at the cost of detecting
some slot sequences (low recall).

6. SUMMARY AND DISCUSSION

Recent statistical approaches to SLU require external resources
(e.g. gazetteers, grammars, syntactic treebanks) which make
rapid development and ongoing maintenance of SLU compo-
nents costly [1, 2, 3, 4]. We present a new method which
proceeds from simple corpora annotated only with slot val-
ues. Such datasets are commonly used in dialogue systems
development and are easy to produce and update.

We used the ATIS 3 corpus [5] in this paper, for compar-
ison with [2] (but have also used the OVIS corpus [1] with
similar results). We show that it is possible to reach state-of-
the-art performance without using any other extra resources,
by using Markov Logic Networks (MLNs). We outperform
the Hidden Vector State model of [2] which additionally used
a gazetteer. Furthermore we show that using global features
(with their ability to capture long-distance dependencies) in
statistical learning approaches is a promising method for fu-
ture advances in SLU. By using them we obtain a 1.26% im-
provement in performancewhen compared to the HVS model.

In ongoing work we are are also investigating how the ad-
dition of extra information (such as gazetteers and syntactic
information) improves the MLN models. We are exploring
new con gurations for MLN models for this task. Ultimately,
such work will improve the state-of-the-art in statistical pars-
ing, from limited and practical development resources, for de-
velopment of robust spoken dialogue systems.
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