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ABSTRACT 
 

This paper focuses on speech based emotion classification 
utilizing acoustic data. The most commonly used acoustic 
features are pitch and energy, along with prosodic 
information like rate of speech. We propose the use of a 
novel feature based on instantaneous frequency obtained 
from the speech, in addition to the aforementioned features, 
in order to take into account the vocal tract parameters as 
well as vocal chord excitation. The proposed features 
employ the recently emerged empirical mode decomposition 
to decompose speech into AM-FM signals that are 
symmetric about zero and suitable for Hilbert transformation 
to extract the instantaneous frequency. The proposed 
features provide a relative increase in classification accuracy 
of approximately 9% when appended to established acoustic 
features. 
 

Index Terms— Emotion classification, instantaneous 
frequency, empirical mode decomposition, hidden Markov 
models, front-end processing. 
 

1. INTRODUCTION 
 

Automatic emotion classification has gained increasing 
attention from researchers over the past few years due to its 
potentially broad range of applications, including computer-
based tutoring systems, tele-monitoring of patients and call 
centre services that can automatically transfer angry 
customers to human operators [1]. 

Our focus is the development of a system that can detect 
the emotional state of a person based on speech. The system 
considered in this paper does not make use of semantic or 
linguistic information and as such does not make use of 
language models. Such systems rely solely on prosodic 
and/or spectral features such as pitch, intensity, speech rate, 
cepstral coefficients, group delay [1-5]. 

Among features proposed for emotion recognition, 
those derived from pitch and energy are the most popular for 
a speaker-independent emotion classification system, where 
data from target speakers are not available for training. 
These features characterize the state of the vocal chords, but 

do not provide any information as to the state of the vocal 
tract. On the other hand, features based on Mel frequency 
cepstral coefficients (MFCCs) and group delay of the all 
pole filter modelling the vocal tract, while useful in a 
speaker-dependent emotion detection system, are 
outperformed by vocal chord parameters in a speaker-
independent system [5]. This is most likely due to the non-
trivial differences in the vocal tract characterisations for 
different speakers. Thus, a feature vector that is derived 
from the speech spectrum, but excludes details that vary 
between different speakers will be useful for a speaker-
independent emotion classifier. One way of condensing the 
information contained in the speech spectrum is to obtain 
broad measures of the spectral magnitude distribution from 
the DFT, such as the spectral slope [4] or spectral centroid 
[6]. However, the time resolution of such features will be 
constrained by the DFT window length and these are crude 
approximations during non-stationary segments of speech. 

This problem can be overcome using an estimate of the 
instantaneous frequency. The recently pioneered empirical 
mode decomposition (EMD) [7] can be used to represent the 
speech signal as a sum of zero-mean AM-FM components 
which then allow for the definition of a positive 
instantaneous frequency for each component based on the 
Hilbert transform. We propose the use of a weighted 
frequency feature based on these component instantaneous 
frequencies for a speaker-independent emotion classification 
system. 
 

2. EMD BASED INSTANTANEOUS FREQUENCY 
 

Any real-valued signal can be written as an analytic signal 
by setting it as the real part of the analytic signal and its 
Hilbert transform as the imaginary part of the analytic signal 

)()()( tiytxtz += , (1) 

where x(t) is the real valued signal and y(t) is the Hilbert 
transform of x(t). 

From the analytic signal, the instantaneous phase can be 
obtained and the time derivative of the instantaneous phase 
is then defined as the instantaneous frequency. The complex 
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analytic function also allows for the definition of 
instantaneous amplitude. 
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where φ(t) is the instantaneous phase, θ(t) is the 
instantaneous frequency and a(t) is the instantaneous 
amplitude. 

A problem for most methods of instantaneous frequency 
estimation occurs when sudden changes in the amplitude or 
frequency of the signal result in the instantaneous frequency 
paradoxically taking negative values [8]. The necessary 
conditions for a meaningful definition of instantaneous 
frequency based on the analytic representation of the signal 
are that the signal is symmetric with respect to the local zero 
mean, and has the same number of extrema and zero 
crossings [7]. Functions satisfying these conditions are 
referred to as intrinsic mode functions (IMF) by Huang et al. 
[7]. The empirical mode decomposition (EMD) [7] enables 
any signal to be written as a sum of a few intrinsic mode 
functions and in some cases a monotonic residue that 
represents the overall trend of the signal. The empirical 
mode decomposition process begins by extracting the first 
intrinsic mode function, which consists of oscillations on the 
smallest scale, locally by a sifting process. This IMF is then 
subtracted from the signal and the process is iterated until all 
possible intrinsic mode functions have been extracted and 
only a monotonic residue is left (Fig. 1.). 

 
Fig. 1. Overview of the empirical mode decomposition 

 
Due to the present lack of a mathematical framework 

for the EMD, there are limitations to the study of its 
properties. In the following section we investigate its 
application to speech signals using empirical methods. 
 

3. WEIGHTED FREQUENCY FEATURE 
 

3.1. Investigation of IMFs in Speech 

As seen in equations (1) to (4), the instantaneous amplitude 
and frequency can be used to characterise the spectral 
content of a signal such as speech. Typically, speech signals 
sampled at 22050 Hz contain between 14 and 19 IMFs and 

the instantaneous amplitudes and frequencies derived from 
all these intrinsic mode functions (together with the residue) 
contain all the information present in the signal. In informal 
experiments it was observed that for speech signals in 
general approximately the first five modes (IMFs) contained 
most of the perceptually significant information. 

An investigation of this observation, was conducted by 
measuring the PESQ scores of speech reconstructed from the 
M most significant modes together with mean IMF 
frequencies and mean IMF energies from over 9 min of 
22050 Hz sampled speech. Results from this experiment, 
together with informal listening tests, showed that speech 
reconstructed from the first five modes (IMFs) was of 
sufficiently high quality for classification tasks. It was also 
observed that the spectral region addressed by IMFs beyond 
5 is very small and likely to be correlated with pitch 
information. Thus, only the first five modes were used in all 
experiments reported in this paper. Average PESQ scores 
obtained for speech signals reconstructed with different 
number of IMFs, and the mean instantaneous frequency of 
each intrinsic mode function are shown in Fig. 2.  
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Fig. 2. (a) Average PESQ scores for reconstructed speech 
using different number of IMFs; (b) Mean Instantaneous 

Frequency and mean energy for first 8 IMFs 
 
3.2. Emotion Characterization using EMD-Based IFs 

The speech spectrum changes significantly according to the 
phoneme being uttered, the speaker and the emotional state 
of the speaker, among other factors. The changes in the 
instantaneous frequencies due to changes in speech content 
and the different vocal tract characteristics of different 
speakers makes using them directly as features for an 
emotion classifier impossible. We propose using the 
weighted average of the instantaneous frequencies of the 
first five modes, with the instantaneous amplitudes acting as 
the weights, as a feature. The weighted frequency, wf[n] is 
defined as follows: 
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where am[n] and θm[n] are the instantaneous amplitude and 
frequency of the mth IMF and M = 5 in our experiments. 
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Fig. 3. Magnitude spectra and average weighted frequency 
values for 20ms frames of speech of phoneme /aa/ for two 

emotions: (a) Neutral; (b) Anger. 
 

During the computation of pitch, which is one of the most 
commonly used features in speaker-independent emotion 
classifiers, information pertaining to the state of the vocal 
tract is discarded since pitch is a characteristic of the vocal 
chord vibration. Weighted frequency, wf[n] on the other 
hand, is computed from the speech signal without any pre-
processing and takes into account the spectral shaping 
imposed by the vocal tract onto the vocal chord excitations. 
The weighted frequency is indicative of the energy 
distribution in the speech spectrum (Fig. 3), taking small 
values when most of the energy is concentrated in the low 
frequencies (first formant) and larger values when higher 
frequencies (higher formants) contain more energy. This 
information is useful for discriminating between emotions, 
as shown in the above figure, and similar differences in the 
weighted frequency due to emotional states were observed in 
other phonemes as well. 

 
Fig. 4. Weighted frequency feature extraction. 

In our experiments, a weighted frequency feature was 
computed from wf[n] (not directly feasible as a feature) for 
40ms frames using the EMD sifting process and stopping 
conditions suggested by Rilling et al. [9]. The discrete 
cosine transform of this weighted frequency was then 
obtained and the first three coefficients were selected as a 
feature vector to represent that frame of data (Fig. 4.). 
 

4. EMOTION CLASSIFICATION SYSTEM 
 

4.1. Front-End 

For our system, we employed the features (ZEPS) proposed 
by Huang et al. [4] with one change. The energy slope 
feature, a ratio of the energy contained in the high frequency 
region of the spectrum (> 1 kHz) to that of the low 
frequency region of the spectrum (< 1 kHz), was replaced by 
the weighted frequency feature (WF) proposed in this paper. 
The WF is representative of the spectral region containing 
the most energy and, we hypothesize, is more informative 
than the energy slope feature which only gives the relative 
distribution of energy between high and low frequency 
regions. Thus the 3-dimensional weighted frequency features 
were concatenated with pitch, energy and zero crossing rate 
(ZCR) to give a 6-dimensional feature vector “ZEP+WF” 
per frame. 

All features were computed within 40 ms frames 
overlapped by 30ms. Rectangular windows were used since 
pitch, energy and weighted frequency estimation do not 
allow for the use of a tapered window and the ZCR is 
unaffected by window choice. Sequences of the 6-
dimensional features computed for 10 consecutive frames 
were then passed to a speaker-independent HMM-based 
sequential back-end, capable of accounting for temporal 
variations within the sequence. Thus, classifier decisions 
were based on 130ms of speech. It should be noted that pitch 
estimates can be made only for voiced speech, thus only 
those sequences spanning voiced speech were used in both 
training and testing of the classifier. Previously, we showed 
that a modified feature warping technique can be used to 
reduce inter-speaker variability and improve the accuracy of 
a speaker independent emotion classifier [10], and this was 
applied to all features in our experiment. 
 
4.2. Back-End 

It has been suggested that sequential classifiers (such as 
HMM-based classifiers) are better suited for the task of 
classifying emotions than other commonly used non-
sequential classifiers such as support vector machines and 
decision trees [4]. Observations from our preliminary 
investigations into back-end configurations tend to agree 
with this suggestion. In this paper we use an HMM-based 
classifier and a feature vector devoid of delta features, 
similar to the system used in [4]. Each state of the HMM is 
modelled by a Gaussian mixture model (GMM). For each 
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emotion, a hidden Markov model is trained and the emotion 
corresponding to the model best matching the incoming test 
sequence is chosen as the emotion for that sequence. In 
contrast to the system in [4], we use shorter sequences in 
order to increase the number of tests, enabling us to estimate 
reliable statistics at the cost of slightly reduced accuracy. 
We do this since our aim here is to show that the proposed 
weighted frequency features contain information rather than 
to build a complete emotion classification system. In our 
experiments all emotions were modelled by 4-state HMMs, 
with each state represented by a GMM containing 4 
mixtures, which provided the best trade-off between 
generalisation and accurate modelling of the feature 
distributions during empirical work. 
 

5. EXPERIMENTS 
 

For our experiments we used the LDC Emotional Prosody 
Speech corpus [11], comprising speech from professional 
actors trying to express emotions while reading short phrases 
consisting of dates and numbers. There is therefore no 
semantic or contextual information available. The entire 
database consists of 7 actors expressing 15 emotions for 
around 10 utterances each. When recording the database, 
actors were instructed to repeat a phrase as many times as 
necessary until they were satisfied the emotion was 
expressed and then move onto the next phrase. Only the last 
instance of each phrase was used in this experiment. 

The system described in section 3 (Figure 4) was 
implemented with different features in order to judge the 
performance of the proposed features. The experiments were 
repeated 7 times in a ‘leave-one-out’ manner, using data 
from each of the 7 speakers as the test set in turn and the 
data from the other 6 as the training set. Experiments for a 
five-emotion classification problem involving Neutral, 
Anger, Happiness, Sadness and Boredom were performed. 
Classification accuracies obtained using ZEP+WF are 
compared with those obtained from ZEPS [4] and cepstral 
features in Table 1. From these results, it can be seen that 
weighted frequency does indeed contain more discriminative 
information than the energy slope. Moreover, the best 
performance (averaged over all emotions) is achieved when 
the WF features are used in combination with ZEP features. 
 

6. CONCLUSION 
 

This paper presents a novel feature for use in a speaker-
independent multi-class speech based emotion classification 
system. We obtain estimates of multiple instantaneous 
frequencies and amplitudes present in speech from the 
analytic representation of the intrinsic mode functions 
obtained from an empirical mode decomposition of the 
speech signal. A weighted mean frequency is then computed 
and discrete cosine transformed to obtain a compact 
representation. The weighted frequency feature emphasizes 

the region of the spectrum containing the largest amount of 
energy at each instant, which in turn is affected by the 
emotional state of the speaker. Evaluation results show that 
the addition of the proposed weighted frequency features to 
the front-end of a five-emotion classifier produces an 
increase in the classification accuracy. Current research is 
focused on an attempt to better utilise the information 
contained in the instantaneous frequencies. 
 
Table 1. Comparison of five class speaker-independent 

emotion classification accuracies (%), evaluated 
on the LDC Emotional Prosody database 

Emotion 
Energy 

Slope (S) 
alone 

WF 
alone 

ZEPS MFCC 
 

ZEP + 
WF 

Neutral 43.1 44.5 33.0 36.1 37.6 
Anger 54.4 66.4 73.3 64.4 75.7 

Sadness 35.5 30.7 35.6 36.8 41.2 
Happiness 21.7 21.9 42.0 26.0 40.0 
Boredom 9.8 30.0 36.2 39.6 38.5 

Mean 30.2 36.2 41.1 38.0 44.7 
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