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ABSTRACT

The ability to identify speech acts reliably is desirable in any
spoken language system that interacts with humans. Mini-
mally, such a system should be capable of distinguishing be-
tween question-bearing turns and other types of utterances.
However, this is a non-trivial task, since spontaneous speech
tends to have incomplete syntactic, and even ungrammat-
ical, structure and is characterized by dis uencies, repairs
and other non-linguistic vocalizations that make simple rule
based pattern learning dif cult. In this paper, we present
a system for identifying question-bearing turns in sponta-
neous multi-party speech (ICSI Meeting Corpus) using lex-
ical and prosodic evidence. On a balanced test set, our sys-
tem achieves an accuracy of 71.9% for the binary question
vs. non-question classi cation task. Further, we investigate
the robustness of our proposed technique to uncertainty in the
lexical feature stream (e.g. caused by speech recognition er-
rors). Our experiments indicate that classi cation accuracy
of the proposed method is robust to errors in the text stream,
dropping only about 0.8% for every 10% increase in word er-
ror rate (WER).

Index Terms— question turn, speech act, dialog,
prosody, spontaneous speech

1. INTRODUCTION

Spontaneous interaction between humans is characterized by
various types of speech acts, including but not limited to ques-
tions, statements and exclamatory phrases. Knowledge of
speech act categories can be useful for automated dialog sys-
tems that interact with humans using spoken language. For
instance, if the system senses that the user has posed a ques-
tion, it can use this knowledge in conjunction with informa-
tion extracted from other modalities (e.g. ASR transcription)
to generate a suitable response. Automatic dialog act classi -
cation has previously been performed with the aid of prosodic

[1, 2], lexical [3, 4] and syntactic [5] cues.
While the vocabulary of dialog acts is usually abstract and

domain-speci c (the Switchboard-DAMSL corpus [6], for in-
stance, de nes 42 types of dialog acts), we focus on a more
universal subset of the speech act categorization problem -
that of distinguishing question-bearing turns from other types
of utterances in spontaneous speech. The fragmented, un-
grammatical structure of spontaneous speech makes this a
dif cult problem. This problem is also characterized by an
inherent bias in favor of non-question turns, which signi -
cantly outnumber question turns. Previous work in this area
has been presented in Jackson et al. [7], where the authors
automatically identify question turns in student-tutor interac-
tions in the ITSPOKE [8] database using prosodic and lexical
information. Shriberg et al. [2] investigate the use of prosodic
cues for identifying dialog acts, including question turns.
In this paper, we present a system that uses prosodic and

lexical evidence to detect question turns in multi-party spon-
taneous speech using two different techniques: 1) maximum-
likelihood classi cation and 2) boosting decision stumps on a
bag-of-words representation. Since most dialog systems op-
erate on ASR output, it is desirable that the classi er be ro-
bust to ASR errors and degrade gracefully as the error rate
increases. To evaluate the behaviour of this aspect of our
system, we investigate the variation of classi cation accu-
racy as a function of the word error rate (WER) by randomly
introducing insertion, substitution and deletion errors to ap-
proximate the behavior of an ASR. The rest of this paper
is organized as follows: Section 2 gives a detailed descrip-
tion of the database used in our experiments. Section 3 gives
an overview of the acoustic-prosodic features and classi ers
for question turn classi cation. Section 4 describes the two
lexical classi ers and describes how they are integrated with
acoustic evidence to improve performance. Section 5 sum-
marizes our experimental results; Section 6 concludes with
an overview of this work and outlines future directions for
research.

50051-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



2. DATA CORPUS

We used the ICSI Meeting Corpus to train and evaluate our
question turn classi ers. This corpus consists of spontaneous
multi-party conversations from 75 meetings collected at ICSI,
UC Berkeley, during the years 2000-2002. The database con-
tains both male and female speakers (native and non-native),
though not in equal proportion. We chose this corpus to
test the ef cacy of our question-turn classi cation scheme in
a real-world scenario with spontaneous utterances, most of
which are fragmented, have compound structures, or are oth-
erwise grammatically incorrect. Out of 75 meetings, we ob-
tained our training and test data from 27 randomly selected
meetings (ca. 25 hours of speech). Each meeting had between
9 and 15 participants.
We obtained a total of 22,511 turns, of which 2,223 were

question bearing turns and the remaining 20,288 were non-
questions. Given this bias in favor of non-question bearing
turns, we created a balanced test set consisting of 500 sam-
ples of each category so as to be able to provide a meaningful
evaluation of our system. We used the remaining 21,511 turns
(19,788 non-questions and 1,723 questions) for training.

3. ACOUSTIC-PROSODIC CLASSIFIER

We investigate acoustic features associated with pitch, loud-
ness and zero-crossing that discriminate between question
and non-question turns. We speci cally focus on pitch be-
haviour at the end of the utterance, as it has been shown to be
an indicator of question turns [7].

3.1. Acoustic Features

We estimated fundamental frequency (F0) using an algorithm
similar to that presented in [9]. F0 values, short-time energy
and zero-crossing rate (ZCR) were computed every 10ms.
Each feature was normalized by its mean value in the ut-
terance. Since rising intonation is a characteristic of some
types of questions, we extracted a total of 12 prosodic features
based on the above parameters from the terminal 200ms of the
voiced portion of each utterance. The information gain crite-
rion [10], computed using the Weka toolkit [11], was used to
rank the features in order of their importance for classi ca-
tion. Table 1 lists them in order of decreasing information
gain. According to this criterion, F0 range within the termi-
nal window is the most informative feature that distinguishes
questions from other utterances.

3.2. Acoustic Classi ers

We compared Gaussian mixture model (GMM) and multi-
layer perceptron (MLP) classi ers for identifying question
turns based on the acoustic features. Since our test set was
balanced and did not re ect the bias in the training set, we

Table 1. Acoustic-prosodic features in order of decreasing
information gain for question turn classi cation
Feature Description
rng val F0 range
min val minimum F0
avg val average F0
max val maximum F0

a1 F0 slope
zcr a2 2nd order term of ZCR polynomial t
eng a1 slope of short-time energy
sd val F0 standard deviaton
perc diff % difference between terminal avg. F0 to

overall avg. F0
eng a2 2nd order term of short-time energy poly-

nomial t
zcr a1 slope of ZCR

a2 2nd order term of F0 polynomial t

implemented maximum-likelihood (ML) as opposed to tra-
ditional maximum a-posteriori (MAP) classi cation. We
trained 5-mixture, diagonal covariance GMMs for question
and non-question turns using the EM algorithm while dis-
carding the class priors. For classi cation, the likelihood of
acoustic features derived from each test utterance was eval-
uated using both GMMs, and the utterance was labeled with
the class corresponding to the GMM that better t the obser-
vations.
The MLP was trained with 20 hidden nodes and 2 output

nodes with softmax activation that provided class posterior
probabilities. In order to alleviate the effect of prior bias, we
performed post-scaling of theMLP outputs by the appropriate
class priors and converted them to pseudo-likelihood scores,
which we used for classi cation.

4. LEXICAL CLASSIFIERS

Although F0-related prosodic features are useful for question
turn classi cation, many types of questions do not exhibit a
rising intonation. For instance, interrogatives, also known
as wh-questions because they often contain the words what,
why, who, which, etc. are usually characterized by a falling
F0 contour. These can easily be confused with declarative
statements, which also exhibit a falling intonation pattern. In
this case, it is the lexical evidence that distinguishes questions
from non-questions. In this section, we describe two types of
question-turn classi ers trained on lexical evidence.

4.1. Language model classi er

This is a generative classi er that models short-range con-
text typical of question-bearing turns. It is particularly use-
ful for capturing words and phrases that are commonly found
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Table 2. Discriminating words
1-grams 1+2-grams
yeah what
what yeah
you you
mmhmm do;you
do do
how how
is mmhmm
or are;we
the is;it
are is

in questions. We built two trigram LMs, one for each class,
from the training data using the SRILM toolkit [12]. We
interpolated these models with a large, spontaneous speech
backgroundmodel (consisting of Switchboard and data mined
from the WWW) in order to obtain smooth probability esti-
mates and reduce the effect of out-of-vocabulary (OOV) terms
in the test set. For each test utterance, we computed the log
probability of the text given the two LMs, and assigned the
class label whose model better t the input text.

4.2. Bag-of-words classi er

In a bag-of-words (BOW) representation, each utterance is
described by a feature vector that contains counts of each vo-
cabulary item that occurs in it. Such a representation is quite
popular for document matching and classi cation. We used
the CMU BOW [13] toolkit to obtain a BOW representation
for the two classes. The information gain criterion was used
to determine which words were important for discriminating
between question and non-question turns. Table 2 shows the
10 most important unigrams and bigrams ranked in order of
decreasing information gain. For classi cation, we used dis-
crete AdaBoost over decision stumps, which are simple rules
(single node decision trees) that classify a test utterance based
on a threshold of the count of a word in the BOW represen-
tation. The BoosTexter tool [14] was used to implement this
classi er.

4.3. Combined acoustic and lexical classi er

For ML classi cation, we combined likelihood scores pro-
vided by the MLP with log probability scores provided by the
language model. For the BOW representation, classi cation
was performed using boosted decision stumps (AdaBoost)
that combined the acoustic and lexical features (counts of un-
igrams and bigrams).

Table 3. Question classi cation performance
Method Accuracy
Chance 50.0%
Acoustic (GMM) 55.4%
Acoustic (MLP) 61.0%
Lexical (LM) 69.9%
MLP + LM 71.2%
Lexical (BOW) 71.3%
BOW + Acoustic 71.9%

5. EXPERIMENTAL RESULTS

We divided the entire corpus into 10 random training and test-
ing partitions, creating balanced test sets containing a total
of 1,000 turns, with 500 samples each of question and non-
question turns. Since the test set was balanced, the chance
level was 50%. The remaining data was used for training.
First, we used clean transcriptions from the corpus to train
the lexical models. Table 3 summarizes the performance of
various individual and compound classi cation techniques.
The use of prosodic features with the MLP improved perfor-
mance over chance by 11% absolute, whereas the language
model performed much better with a gain of almost 20% ab-
solute. Integrating the acoustic features with the language
model classi er provided an additional boost of 1.3% abso-
lute. The BOW classi er bettered the chance level by over
21% absolute. When combined with the acoustic evidence,
performance of the BOW-based classi er improved by nearly
22% over chance.
We then studied the effect of errors in the text transcrip-

tion on classi cation performance. Instead of performing full-
blown speech recognition, we used a script to corrupt the test
text to the desired word error rate (WER). This allowed us
to easily manipulate the error rate and also its individual con-
stituents - insertions, substitutions and deletions - and perform
experiments in this controlled environment. The downside
of this method is that the errors introduced are random and
not characteristic of ASR (i.e. not based on acoustic or lan-
guage model confusability). Figure 1 illustrates the variation
in question turn classi cation performance as a function of the
WER for different con gurations. The LM classi er exhibits
a 9.1% degradation in performance as the WER increases
from 0% to 50%. On the other hand, the BOW classi er is
more robust to word errors, showing just a 4.9% degradation
over this range. When combined with acoustic features, this
classi er exhibits just a 3.8% reduction in classi cation accu-
racy over the same range of WER.

6. DISCUSSION AND FUTUREWORK

Question turn classi cation is one aspect of the speech act
identi cation problem that we have addressed in this paper.
For ML classi cation, we used GMM and MLP classi ers
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Fig. 1. Variation of question classi cation accuracy vs. WER

for acoustic features and a n-gram language model for lex-
ical features. For boosted decision stump classi cation, we
used a BOW representation for the lexical features. We note
that, while the prosodic features are useful and perform better
than chance, it is the lexical features that providemore predic-
tive power for distinguishing questions from non-questions.
Combining the two results in a small improvement over the
lexical-only classi er.
We also examined the effect of errors in the text transcrip-

tion on classi cation performance. The LM classi er suffers
signi cant performance degradation as the WER increases.
This is because introduction of errors not only affects the key-
words that discriminate between the two classes, but also the
surrounding context, causing a progressively larger mismatch
between the noisy text and its correspondingLM. On the other
hand, the BOW classi er is more robust to these errors, with
a much smaller reduction in performance over the same range
of WER. This is due to the fact that the BOW classi er does
not utilize local context. This is a useful result for systems
that work with the output of ASR. Another interesting obser-
vation about the BOW-based system is that, while the acous-
tic features do not provide much gain in combination with
clean text (0.6%), the performance gap widens as the WER
increases - at 50% WER, the difference is 1.7%.
One limitation of this work is that the question turn de-

tector works in a context-free fashion. However, context
is likely to provide important cues for identifying question
turns. Along with other information such as trigger words and
speaker change, contextual constraints can be combined with
the context-free classi er to track the ow of conversation and
improve question-turn identi cation. Interesting issues in this
regard include selection of contextual features and the devel-
opment of a suitable framework for modeling the progression
of these events.
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