
EXTENSION OF HVS SEMANTIC PARSER BY ALLOWING LEFT-RIGHT BRANCHING

Filip Jurčı́ček, Jan Švec, and Luděk Müller

Department of Cybernetics, Faculty of Applied Sciences, University of West Bohemia,
Pilsen, Czech Republic

{filip,honzas,muller}@kky.zcu.cz

ABSTRACT
The hidden vector state (HVS) parser is a popular method for

semantic parsing. It is used in the language understanding mo-

dule of the statistical based spoken dialog system. This paper

presents an extension of the HVS semantic parser. It enables

the parser to generate broader class of semantic trees. This

modification can be used to improve the performance of the

parser by generating not only the right-branching trees (like

original HVS parser) but also limited left-branching trees and

their combinations. The extension retains simplicity and pro-

perties of the original HVS parser. We tested the method on

Czech human-human train timetable corpus. The modified

HVS parser yields statistically significant improvement. The

accuracy of the system increased from 50.4% to 58.3% abso-

lutely.

Index Terms— semantic analysis, spoken dialog sys-

tems, spoken language understanding

1. INTRODUCTION

Communicating with a user in a form of spoken language se-

ems to be an effective and comfortable tool to obtain exact

travel, tourist, or cultural information in modern computer in-

formation retrieval dialog systems. One of the key technolo-

gies in such conversational systems is spoken language under-

standing. The understanding involves identifying the seman-

tics from the query, and subsequently retrieving the relevant

information to produce an suitable response. The research is

motivated by the increasing demand of complex user initia-

ted spoken dialogs with multiple intentions and attributes per

dialog turn.

In this article, we focus on the statistical semantic parsing

which we understand as a search process of the sequence of

concepts S = c1, c2, . . . , cT that has the maximum aposte-

riori probability P (S|W) for the word sequence observation

W = w1, w2, . . . , wT . A semantic concept is considered to

be a basic unit of a particular meaning (for example DEPAR-

TURE, STATION, TIME). The search can be described as

S∗ = argmax
S

P (S|W) = argmax
S

P (W |S)P (S) (1)

where P (S) is called the semantic model and P (W |S) is

called the lexical model. The semantic model P (S) provi-

des the probability of the semantics S. The lexical model

P (W |S) assigns a probability to the underlying utterance

(word/lexical sequence) W given the semantics S.

He and Young proposed a hidden vector state (HVS) par-

ser [1] which performs very well on the ATIS task [2] even

though the HVS parser allows to generate right-branching se-

mantic trees only. We present an extension of the HVS par-

ser which enables it to generate not only right-branching se-

mantic trees but also limited left-branching semantic trees

and their combinations. In right-branching languages, for

example Spanish, adjectives usually follow nouns, direct ob-

jects follow verbs and prepositions. On the opposite, in left-

branching languages, for example Japanese, adjectives pre-

cede nouns, direct objects come before verbs, and there are

postpositions. Nevertheless, for most languages, the main

branching tendency is just a tendency with a number of excep-

tions. For instance, English shows left branching at the level

of noun phrases but it is mostly right-branching at the sen-

tence level. In case of Czech, we found that a substantial por-

tion of parsing errors of the original HVS parser was caused

by the inability to produce left-branching semantic trees. As a

result, the possibility of at least limited left-branching parsing

is convenient.

2. THE HIDDEN VECTOR STATE PARSER

The HVS parser is an approximation of a pushdown automa-

ton. A vector state in the HVS parser represents a stack of

a pushdown automaton which keeps semantic concepts as-

signed to several words (see Figure 1).

The transitions between vector states are modeled by

stack operations: popping from zero to four concepts from the

stack, pushing a new concept onto the stack, and generating a

word. The first two operations belong to the semantic model

which is given by:

P (S) =
T∏

t=1

P (popt|ct−1[1, . . . 4])P (ct[1]|ct[2, . . . 4]) (2)

49931-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

Fig. 1. An example of a full semantic parse tree with the corre-

sponding stack sequence. Corresponding abstract semantic

tree: DEPARTURE(TO(STATION), TIME).

where popt is the vector stack shift operation and takes

values in the range 0, 1, . . . , 4, and ct at a word posi-

tion t is a vector state consisting of 4 concepts, i.e. ct =
[ct[1], ct[2], ct[3], ct[4]] (shortly ct[1, . . . 4]), where ct[1] is a

preterminal concept dominating the word wt and ct[4] is a

root concept. Note the concept ct[1] in the stack is always the

most recent concept pushed onto the stack (the concept ct[1]
is the topmost one in the depiction of the stack in Figure 1).

The probability P (popt|ct−1[1, . . . 4]) represents a model

for popping 0 to 4 concepts from the stack. The variable popt

defines the number of concepts which will be popped off the

stack.

The lexical model performs the last operation - generation

of a word. The lexical model is defined as

P (W |S) =
T∏

t=1

P (wt|ct[1, . . . 4]) (3)

where P (wt|ct[1, . . . 4]) is a conditional probability of gene-

ration of a word wt given ct[1, . . . 4]. For more details about

the HVS parser see [1].

2.1. Training data

It is possible to train the HVS parser using so called abs-

tract semantic annotations, which do not explicitly provide

the alignment between the semantic tree and the words of the

utterance. For the utterance “Jede nějaký vlak do Prahy kolem
čtvrté odpoledne” (Lit.: “Does any train go to Prague around
four p.m.?”) (see Figure 1), the corresponding semantics is

DEPARTURE(TO(STATION),TIME). For more details see [3].

The acquisition of the abstract semantic annotation does

not need to be too expensive because it is not necessary to

obtain fully annotated parse trees. The full parse tree defines

not only the tree structure but also the alignment of all words

to the leafs of the tree. Dialogue annotators have to define only

the semantic tree that represents the meaning of each training

utterance but they do not have to provide a full parse tree.

An example of the full parse tree of the previous utterance is

illustrated in Figure 1.

3. LEFT-RIGHT-BRANCHING PARSING

In Section 2, we described the original HVS parser. It pops

out from zero to four concepts from and pushes exactly one

concept onto the stack for every input word. These pop and

push operations determine that the class of the generated se-

mantic trees have to be right-branching.

To extend the class of the generated semantic trees we pro-

pose the following modifications. Firstly, in Section 3.1, we

will replace the implicit (deterministic) pushing one concept

onto the stack for every input word with an explicit pushing

operation of zero or one concept onto the stack so that the

parser will be prepared to be easily extended for limited left-

branching parsing. Secondly, in Section 3.2, we will extend

the pushing operation to pushing zero, one, or two concepts.

The pushing zero, one, or two concepts will allow the par-

ser to generate not only the right-branching parse trees but

also the limited left-branching parse trees or their combi-

nations. Left-branching parts of parse trees have the limited

depth which cannot exceed the maximum number of concepts

pushed at once.

3.1. Push operation

This section describes a modification of the HVS parser

which we call the HVS parser with probabilistic pushing

(HVS-PP).

To enable either pushing no concept or one concept onto

the stack, we add a new hidden variable push into the HVS

parser (Equation 2). As a result, the semantic model is as

follows:

P (S) =
T∏

t=1

P (popt|ct−1[1, . . . 4])P (pusht|ct−1[1, . . . 4])

·
{

1 if pusht = 0
P (ct[1]|ct[2, . . . 4]) if pusht = 1

(4)

where pusht is a new hidden variable representing the

pushing operation which takes values 0 for pushing no con-

cept and 1 for pushing one concept onto the stack. If there

is no pushed concept onto the stack (pusht = 0), then the

transition between two neighboring chunks is modeled by the

product P (popt|ct−1[1, . . . 4])P (pusht = 0|ct−1[1, . . . 4]).
If there is one concept pushed onto the stack (pusht =
1), then the transition between two neighboring chunks is

modeled by the product P (popt|ct−1[1, . . . 4])P (pusht =
1|ct−1[1, . . . 4])P (ct[1]|ct[2, . . . 4]).

3.2. Implementation of left-right-branching

In the previous section, we introduced the push hidden va-

riable of the HVS parser; however, its value was limited to

be either 0 or 1. The previous modification in the structure of

the HVS parser was the first step in enabling the HVS parser

4994

Fig. 2. An incorrect parse tree from a right-branching parser.

to insert two concepts at the same time. In the second step

we enable the parser to push more than one concept onto the

stack so the parser can now generate both the right- and left-

branching parse trees and furthermore also their combinati-

ons. As a result, we call this parser the left-right-branching

HVS (LRB-HVS) parser.

However, because our error analysis of the baseline HVS

model on HHTT corpus [3] did not find errors caused by

the inability to insert more than two concepts, we limited the

number of concepts inserted onto the stack at the same time

to two, but in general, the LRB modification is not limited to

two inserted concepts. It can be straightforward to extend the

number of inserted concepts to more than two.

To illustrate the difference between right-branching and

left-right-branching, we can use the utterance “Dneska večer
to jede v šestnáct třicet tři” (Lit.: “Today, in the evening, it
goes at four thirty p.m.”) .

The incorrect parse tree (Figure 2) is represented by the

semantic annotation TIME, DEPARTURE, TIME. Such parse

tree would be an output of the HVS-PP parser, which allows

to generate right-branching parse trees only; the parser is not

able to push more than one concept onto the stack. However,

the correct parse tree is represented by the semantic anno-

tation DEPARTURE(TIME, . . . , TIME). The correct parse tree

(Figure 3) would be an output of LRB-HVS parser because

it is able to push two concepts DEPARTURE and TIME onto

the stack at the same time so that the first word dneska (Lit.:

today) can be labeled with the hidden vector state [TIME, DE-

PARTURE].

Because the push variable takes values in range 0, 1, 2,

the semantic model is as follows:

P (S) =
T∏

t=1

P (popt|ct−1[1, . . . 4])P (pusht|ct−1[1, . . . 4])·

·

⎧⎪⎨
⎪⎩

1 if pusht = 0
P (ct[1]|ct[2, . . . 4]) if pusht = 1
P (ct[1]|ct[2, . . . 4])P (ct[2]|ct[3, 4]) if pusht = 2

(5)

In the case of inserting two concepts onto the stack (pusht =
2), we approximate the probability P (ct[1, 2]|ct[3, 4]) by

P (ct[1]|ct[2, . . . 4])P (ct[2]|ct[3, 4]) in order to obtain more

robust semantic model P (S).

Fig. 3. A correct parse tree from a left-right-branching parser.

3.3. Model complexity

He and Young examined the complexity of the HVS mo-

del. The design of the HVS model ensures that the num-

ber of model parameters is linear in the stack depth, num-

ber of concept labels, and vocabulary size [1]. The additional

complexity of the probability tables P (pusht|ct−1[1, . . . 4]),
P (ct[1]|ct[2, . . . 4]) and P (ct[2]|ct[3, 4]) are still linear in

these parameters. Therefore the LRB-HVS preserves the

complexity of the baseline HVS model.

4. EXPERIMENTS

The semantic parsers evaluated in this article were trained and

tested on the Czech human-human train timetable (HHTT) di-

alog corpus, which was described in [3]. The HHTT corpus

consists of 1,109 dialogs completely annotated with seman-

tic annotations. Both operators and users have been annota-

ted. It has 17,900 utterances in total. The vocabulary size is

2,872 words. There are 35 semantic concepts in the HHTT

corpus. The dialogs were divided into training data (798 dia-

logs - 12972 segments, 72%), development data (88 dialogs -

1,418 segments, 8%), and test data (223 dialogs - 3,510 seg-

ments, 20%). Each segment has assigned exactly one abstract

semantic annotation. The development data were used for fin-

ding the optimal concept insertion penalties and the optimal

semantic model weights [4].

The training of the semantic and the lexical models of

HVS parser is divided into three parts: (1) initialization,

(2) estimation, (3) smoothing. All probabilities are initialized

uniformly. To estimate the parameters of the models, it is ne-

cessary to use the expectation-maximization (EM) algorithm

because the abstract semantic annotations do not provide full

parse trees. We smooth all the probability tables using a back-

off model. To build the semantic parser, we used the Graphical

modeling toolkit (GMTK) [5].

Both the baseline and the proposed modification were tra-

ined and evaluated using the corresponding transcriptions.

We evaluated our experiments using two measures: seman-

tic accuracy and concept accuracy. These measures compare

the reference tree, which annotates the transcription, with the

hypothesis tree, which is found using the search process.

4995

4.1. Semantic accuracy

The reference and the hypothesis annotations are considered

equal only if they exactly match each other. The semantic

accuracy of a hypothesis is defined as SAcc = E
N · 100%,

where N is the number of evaluated semantics, E is the num-

ber of hypothesis semantic annotations which exactly match

the reference. The exact match is very tough standard because

for example under the exact match the difference between

semantics ARRIVAL(TIME, FROM(STATION)) and ARRI-

VAL(TIME, TO(STATION)) is equal to the difference between

semantics ARRIVAL(TIME, FROM(STATION)) and DEPAR-

TURE(TRAIN TYPE). Therefore we introduce the concept

accuracy.

4.2. Concept accuracy

Similarity scores between the reference and the hypothesis

semantics can be computed by the tree edit distance algorithm

[6]. The tree edit distance measures the similarity between

two trees by comparing subtrees of both the reference and the

hypothesis annotations.

The tree edit distance algorithm uses the dynamic progra-

ming to find the minimum number of substitutions, deletions,

and insertions required to transform one tree into another one.

The operations act on nodes and modify the tree by changing

the parent/child relationships of given trees.

The concept accuracy of a hypothesis is defined as

CAcc = N−S−D−I
N · 100%, where N is the number of con-

cepts in the reference semantics, S is the number of substitu-

tions, D is the number of deletions, and I is the number of

insertions.

4.3. Results

In Table 1, there is shown the performance of the HVS-PP

parser and the LRB-HVS parser on development and test data.

We found that both parsers perform significantly better than

the baseline system which is the original HVS parser presen-

ted in Section 2. We used the paired t-test to measure the sta-

tistical significance. The p-value < 0.01 indicates significant

difference.

Table 1. The performance of the HVS-PP and LRB-HVS par-

sers.

Test data Development data

SAcc CAcc p-value SAcc CAcc p-value

baseline 50.4 64.9 52.8 67.0

HVS-PP 54.1 67.2 < 0.01 56.6 68.4 < 0.01

LRB-HVS 58.3 69.3 < 0.01 60.1 70.6 < 0.01

5. CONCLUSIONS

In this work, we have presented a technique which factors the

combined pop and push operation of the original HVS parser

into two independent operations pop and push. The determi-

nistic push operation (one inserted concept for every input

word) became a probabilistic push operation of pushing zero

or one concept onto the stack given the previous stack. This

approach significantly increased the performance of the par-

ser. The improvement comes from the ability to not insert a

new concept onto the stack if it is not desirable.

In addition, we extended the parser to generate not only

right-branching parse trees but also left-branching parse trees

or their combinations. We found that insertion of two con-

cepts into the hidden vector state at the same time is sufficient.

We analyzed the errors of the original HVS parser and we did

not find any example in which the insertion of more then two

concepts into the hidden vector state would have helped. We

found that the ability to generate left-right-branching parse

trees significantly increases the performance of the parser. In

total, SAcc was significantly increased from 50.4% to 58.3%

and CAcc from 64.9% to 69.3% measured on the test data.

6. ACKNOWLEDGMENTS

This work was supported by the Ministry of Education of

the Czech Republic under project No. 1M0567 (CAK), No.

ME909, and No. LC536.

7. REFERENCES

[1] Yulan He and Steve Young, “Semantic processing using

the hidden vector state model,” Computer Speech and
Language, vol. 19:1, 2005.

[2] Charles T. Hemphill, John J. Godfrey, and George R.

Doddington, “The ATIS spoken language systems pilot

corpus,” in Proceedings of DARPA Speech and Natural
Language Workshop, Hidden Valley, PA, USA, 1990.

[3] Filip Jurčı́ček, Jiřı́ Zahradil, and Libor Jelinek, “A

Human-Human Train Timetable Dialogue Corpus,” in

Proceedings of EUROSPEECH, Lisboa, Portugal, 2005.

[4] Filip Jurčı́ček, Jiřı́ Zahradil, and Luboš Šmı́dl, “Prior of

the Lexical model in the Hidden Vector State Parser,” in

Proceedings of SPECOM, St.Petersburg, Russia, 2006.

[5] Jeff Bilmes and Geoff Zweig, “The graphical models

toolkit: An open source software system for speech and

time-series processing,” in Proc. IEEE ICASSP, 2002.

[6] Philip Klein, “Computing the edit-distance between

unrooted ordered trees,” in Proceedings of the 6th Annual
European Symposium. 1998, Springer-Verlag, Berlin.

4996

