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ABSTRACT

Reordering is one of the key problems in statistical machine
translation (SMT). This paper first presents how lexicalized reorder-
ing is embedded into a phrase-based SMT framework modeled by
multiple-graph that was formulated in our previous work. Specif-
ically, we show how lazy reordering graph is computed and com-
bined with our previously proposed multiple layer search (MLS) to
achieve an efficient reordering decoding that is also flexible to take
various reordering models. Secondly, we introduce a variety of lexi-
calized reordering models employed in our system that significantly
improved system performance.

Index Terms— speech translation, multiple-graph decoding, lex-
icalized reordering, finite automata, machine translation

1. INTRODUCTION

Phrase-based statistical machine translation (SMT) has been widely
applied in many state-of-the-art speech translation systems, as sig-
nificant progresses have been made during past years. One major
reason for the success is that the explicit usage of phrases in model-
ings helps for both better word sense disambiguition and local word
orderings in translation. However, how to construct sensible long-
distance orderings of a target translation at a phrase level, particu-
larly for language pairs that differ substantially in syntax orders, re-
mains to be a major challenge for such phrase-based SMT systems.
The challenge comes from two perspectives. First, reliable model-
ing of reorders itself is difficult mainly due to the data sparseness
to consider an exponential number of possible orderings; Secondly,
arbitrary reordering makes the translation decoding a NP-complete
problem [1], which results in more complexities in designing a de-
coder and the decoder is more liable to search errors. In the litera-
ture, reordering in SMT has been and is currently extensively studied
by many researchers, for example in [2, 3, 4, 5, 6], to name just a few.
In our previous works, we proposed the Folsom SMT system

[7, 8], which formulates the phrase-based SMT using multiple-graph
with offline finite state optimization. Among these graphs, two graphs
are built offline. One of them encodes entire phrasal level transla-
tion model; and the other represents target language model. There
is another graph that is expanded on-the-fly during decoding to rep-
resent source input. In this framework, the decoding procedure is
handled by the proposed Multiple Layer Search (MLS) algorithm,
which can be viewed as an optimized version of a Viterbi search
combined with lazy compositions of all these graphs simultaneously,
in addition to embedded dynamic minimization. Our method shows
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significant speed and memory advantages [7] over more commonly
used stack decoders in addition to the flexibility support of using ar-
bitrary N-gram language model in decoder, which enables Folsom to
be a converged SMT system for scalable platforms including PDA’s
under limited computational resources. Moreover, due to the usage
of graph and the MLS search, this framework possesses additional
advantages of allowing more effective integration of speech recogni-
tion lattice output with the SMT graphs to achieve improved speech
translation accuracy [8].

In this paper, we particularly discuss how to address reordering
issues for both modeling and effective decoding in such a multiple-
graph based SMT system. Since reordering complexity is exponen-
tial, building a full reordering graph statically is expensive and un-
necessary as most of permutation paths in the graph will not even-
tually lead to any sensible translation results. Therefore, we instead
compute the reordering graph in a lazy fashion, and the reordering
states are composed with translation and language model states dy-
namically during search, which allows us to perform an effective and
virtually loss-free pruning using joint scores from all models at an
early stage to reduce search space dramatically. The first part of this
paper presents how the input graph is dynamically extended to ac-
count for all considered source side reorderings based on some given
reordering models; we will show why this implementation combined
with MLS algorithm allows for flexible reordering models without
modifying the core part of decoder. In following, we propose a num-
ber of lexicalized reordering model training algorithms to estimate
reorderings at both word and phrase levels, with a particular focus
on a data-driven clustering algorithm that is employed to alleviate
the issues of data sparseness.

The remaining part of this paper is organized as follows: Sec. 2
starts with an overview of our multiple-graph based SMT system,
followed by the decoding algorithm that handles flexible reorder-
ings; Sec. 3 describes details of our lexicalized reordering models;
Sec. 4 presents experimental results for speech translation tasks; and
finally, Sec. 5 summarizes our contributions.

2. LAZY REORDERING ANDMLS DECODING FOR
MULTIPLE-GRAPH BASED SMT

2.1. Multiple-Graph based SMT

Phrase-based SMT systems utilize parallel corpus with unsupervised
word-level alignments to learn phrasal translation models. The source
input, assuming a foreign word sequence, fJ

1 is thus segmented into
acceptable phrase sequences f̄K

1 , where 1 ≤ K ≤ J , to search
for the best target English word sequence eI

1 by combining various
phrasal level translations.

In our multiple-graph based system, we express the entire trans-
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lation procedure as a chain of conditional probabilities, which can
be represented by finite-state machines (FSM’s) that model the rela-
tionships between inputs and outputs [7]. Therefore, the translation
task can be framed as finding the best path in the following FSM:

S = I ◦ P ◦ T ◦ W ◦ L (1)

where ‘◦‘ is the composition operator, I denotes the source word se-
quence expressed as a finite-state automaton (presented in details in
Sec. 2.2), and the transducers P , T ,W , and L correspond to source
language segmentation transducer, phrase translation transducer, tar-
get language phrase-to-word transducer, and target language model,
respectively.
To minimize the amount of computation required at decoding

time, it is desirable to perform as many composition operations in
Eq. (1) as possible ahead of time. While it may not be feasible to
compute H = P ◦ T ◦W ◦ L in its entirety as a single FSM, it is
possible to separateH into two pieces: the language model L and the
translation modelM, which is a log-linear combination of a number
of sub-translation models.

M = Min(Min(Det(P) ◦ T ) ◦W) (2)

where Min denotes the minimization operation. Due to the deter-
minizability of P [7],M can be computed offline using a moderate
amount of memory.
Therefore, our translation system is built upon on three graphs

I,M and L, and the decoding problem is formulated as finding the
best path in the following dynamically-composed graph: I ◦M◦L.
To address the problem of efficient search, we have developed a

multiple layer search algorithm. More details of the MLS are pre-
sented in [7, 8], and we provide an overview here. The search initial-
izes with a joint beginning state �s0 with no accumulated cost, which
includes the initial state at each layer. Starting from a state traver-
sal in I, the active states inM are expanded by matching the arc
labels that are consumed in I; and next, active states in layer L are
expanded in a similar fashion to match the output ofM. The costs
from each layer are combined together with heuristic scores such
as word counts and phrase counts penalties using log-linear models.
The procedure is repeated until a joint final states �se is achieved. The
set of legal translation candidates are those where each component
substate is a final state in its layer. The selected candidate is the legal
candidate with the lowest accumulated cost.
It should be noted that we update language model scores at every

target word by traversing L, and that our decoder is flexible to take
an arbitrary-order of N-gram LM in a graph.

2.2. Reordering Search in Multiple-Graph based SMT

During decoding, we assume that target sentence is produced left-to-
right, and all reordering is conducted on the source side. Every state
in the source input graph I represents the source side coverage sta-
tus, and this requires O(2 J ) states in a static graph to represent all
possible permutations of the source side, which is computationally
intractable. Thus, I is computed on-the-fly, subject to certain re-
ordering models and constraints. The lazy nature of reordering graph
computation is similar in spirit to [4], where distance-based reorder-
ing models are used. Within our multiple-graph based framework,
representing reorderings as another layer naturally fits. Moreover,
the lazy computation coupled with the MLS decoding scheme pro-
vides an effective way to conduct beam pruning for both reordering
graph and joint hypotheses combining all three layers. In following,
we will particularly show how lexicalized reordering and decoding
can be implemented in the graph.
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Fig. 1. Input graph computed on-the-fly during search. (a): monotone
decoding is a linear left-to-right automata; (b): reorder graph with the
IBM constraint of skips less than three. Costs associated with each
arc are omitted here and they are determined by specific reordering
models used by the decoder.

Each state in I denotes a specific input coverage, which is rep-
resented by a bit vector. The initial state leaves all bits zero and the
final state has all bits one. Arcs are labeled with an input position
to be covered linking start and end states. Arcs and their weights
are determined by the specific reordering models being used by the
decoder. Every path from the initial state to final state represents an
acceptable permutation of the input.

It should be noted that the MLS decoding procedure is indepen-
dent from the topology of I. Therefore, our scheme is desirable to
achieve a modularized SMT engine, where a unified core decoder
implementation is detached from reordering modules. Various re-
ordering constraints and models can be plugged-in immediately by
providing a specific graph expanding function, needless to modify
the core part of the decoder.

For example, monotone decoding can be regarded as a special
case, where source and target languages are assumed to share the
same order at phrase level. The input layer I is thus constructed as a
trivial left-to-right FSA, which contains only one deterministic path
from the initial state to end state, as shown in Fig. 1(a).
For more general cases, every state in the input graph is ex-

panded by covering a yet uncovered position up to this state, and
states with same bitvector are merged. However, we need to further
distinguish the last covered positions within the same state in order
to calculate following reordering costs properly. Therefore, we track
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the last covered position with a “dot” immediately following the “1”
of that position. For example, an arc outgoing from state “1001.”
with label 3 will merge into state “101.1”. As we pool all the re-
ordering states sharing the same coverage bitvector together, we are
able to perform more efficient beam pruning during the lazy graph
expansion, independent of the positions of last covered bit.
As mentioned above, the unified interface for reordering graph

construction enables our system to support arbitrary reorderings. In
practice, however, unconstrained reordering probabilities are diffi-
cult to estimate reliably, and we need to reduce search space for
speed and memory concerns. Thus, we typically construct the re-
ordering graphs subject to the IBM constraint [9], i.e., only up to
k first positions in the input are allowed to be left uncovered in ex-
panding one state to another. In addition, we also define a maximum
window size that is the distance between the first uncovered position
and the right-most covered position. Fig. 1(b) shows a reordering
graph computed for a four-word input with a maximum skip of 3.
Note that arc costs are omitted for simplicity.
On top of certain reordering constraints, the topology and asso-

ciated arc weights are also determined by reordering models, which
is described in Sec. 3. The joint decoding procedure combining three
layers using a MLS algorithm is identical to the one we presented in
[8], with reordering costs accumulated along the arcs in I.

3. ESTIMATING LEXICALIZED REORDERINGMODELS

A widely-used reordering models is based on relative distances [10]
where higher degree of non-monotonic jumps are consistently pun-
ished independent of actual words or phrases being considered. In
our system, we utilize the lexicalized reordering models that con-
dition the reordering probability not only on relative distances but
also on the actual words. In Sec. 3.1 we first describe two models
based on word and phrase distortion, and propose improved models
to handle data sparseness issues in Sec. 3.2.

3.1. Lexicalized Reorder Models: P - and Q- Model

Our first lexicalized reordering model, denoted as P -model, is sim-
ilar to the out-bound model described in [6]. When expanding from
one state with the last covered word being fj to another state fol-
lowing an arc labeled with input word fi, we want to estimate the
probability of relative jump d = i − j as P (d|fj). Such a distri-
bution can be directly estimated from word-aligned parallel corpus.
Assuming fj is aligned to em, we have:

P̂P (d|fj) =
C(fj , d)P

dk
C(fj , dk)

(3)

where C(fj , dk) is the count of em+1 is being aligned to fj+dk

from entire training data. In practice, the estimated distribution is
further smoothed by interpolating with a distance-decreasing dis-
tribution to account for over-training issues. To apply this model
to a phrase based system, we apply such distortion probabilities di-
rectly for words at a phrase boundary, and discount the probability
for words interior of a phrase.
The next model, denoted as Q-model, takes into account the

phrase alignments obtained from training data. First, we force-align
source sentence f l with target sentence el at phrase level based on
phrasal translationmodels. The forced alignment is obtained through
a search procedure that maximizes the following objective function:

θ
l =

Y

k

P (ēk|f̄a(k)), s.t .
[

k

ēk = e
l
,

[

a(k)

f̄a(k) = f
l
(4)

where a(k) is the aligned phrase position. We consider a maximum
jump window such that |k − a(k)| < 10. For each sentence l, we
extract top ten phrase pair alignments. Next, we reposition phrases
in f l per the order of their counterparts in el. Suppose f l

j is the end-

ing word of a phrase and f l
k is the beginning word of the following

phrase after repositioning, we calculate phrase boundary distortion
probabilities for fj as follows:

P̂Q(d|fj) =

P
l C(f l

j , f
l
k)P

fk,l C(f l
j , f

l
k)

, d = k − j (5)

For words only observed interior of a phrase, we set P̂Q(d|fj) = 1
for d = 1 and 0 elsewhere. The model is then smoothed in a same
fashion as the P-model.

3.2. Models: CQ-Model

Lexicalized reordering models paint a much more refined picture for
the ordering options during search. However, the distribution esti-
mation may suffer from data sparseness issue. Often, most distortion
positions for many words are not observed in the training data, thus
the model relies on the smoothing component, which falls back to a
distance-based model.
The data sparseness issue could be alleviated to some extent by

clustering words. There are at least two schemes to achieve a cluster-
ing. First, one can group words based on their part-of-speech tags as
they tend to share same reordering patterns, such as ‘NP ADJ’ often
rewrites as ‘ADJ NP’ in translating Arabic into English. However,
tag-annotated data is required to train a reliable automatic tagging
model. If such an annotation is not available, an alternative is to
perform an unsupervised data-driven clustering.
We propose such a data-driven clustering procedure that is built

upon P - and Q-models to group words sharing similar reordering
patterns in translation. First, we utilize a vector to describe the
word’s specific distortion characteristics, that is, every word w is
regarded as such a point in a high-dimensional space:

�D(w) = (. . . , P̂P (d|w), . . . , pe), d �= 0 (6)

where pe is the probability that w appears at a phrase end, which is
estimated from forced phrase alignments.
Based onQ-model, we assign every word into one of two groups

depending on how often it appears at a phrase end. Next, each
group is further divided into one of following three classes, left-
jump, right-jump or no-jump, based on each word’s P -model proba-
bility. Next, a bottom-up clustering is conducted for each sub-group,

using the average linkage clustering based on �D(w). For obtained
cluster G, the shared distortion probability of fj ∈ G is defined as:

P̂CQ(d|fj) =

P
fj∈G

PQ(d|fj) × occ(fj)
P

fj∈G occ(fj)
(7)

4. EXPERIMENTAL EVALUATION

4.1. Experimental Setup

To evaluate our system described in this paper, experiments are car-
ried out for a speech translation task translating Farsi into English,
as part of the evaluation tasks of DARPA TransTac program. The
parallel training data has a total of 110K parallel sentences. For our
system development, we held out the data randomly selected from
the available parallel corpus as the internal dev and test set, each of
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Table 1. Data description for training, dev and test sets.
Data Farsi English

Training (words) 960K 1.0M

Vocabulary size 26K 14K

Dev set (1 ref.) 1430 sent.
Running words 11505 13059

Test set 1 (1 ref.) 1390 sent.
Running words 10353 11894

Test set 2 (4 refs.) 416 sent.
Running words 4158 –

Table 2. SMT performance (BLEU %) of various reordering models.
System Dev-1ref Test1-1ref Test2-4ref

Monotone 36.97 28.95 26.39

Lexicalized Reordering

P (w=5, s=3) 38.73 31.67 30.09

Q (w=5, s=3) 38.85 31.86 31.53

CQ (w=5, s=3) 38.91 31.78 31.80

P (w=8, s=3) 38.82 32.02 30.77

Q (w=8, s=3) 39.22 31.72 31.69

CQ (w=8, s=3) 39.45 31.98 31.85

them comes with 1 reference. In addition, we evaluate our proposed
system using DARPA’s official offline evaluation set, which includes
4 references. Data description is summarized in Table 1.
As the focus of this paper is the lexicalized reordering graph I,

we follow a more or less standard procedure here to build our trans-
lation model. The parallel corpus is first aligned in both directions
with GIZA++ [11], and phrase pairs are extracted from the heuristic
combination of the both alignments. The maximum phrase length
was set to 8 on source side, and thus, we obtained over 1M phrase
pairs from the training data. The resulting translation graphM has
about 4M states and 5M arcs. The language model graph L is com-
puted from a back-off 4-gram with modified Kneser-Ney smoothing,
which is trained from the English side of the parallel corpus.

4.2. Experimental Results

The reordering graph I is computed on-the-fly for all experiments.
All feature weights are optimized on dev set with a line search method.
First, we set the baseline as the monotone models, i.e., no reordering
above phrase level is allowed. Next, we plug in various lexicalized
reordering models discussed above. Under the IBM constraint, we
set the maximum skip s = 3, and report experimental results with
maximum reorder window w = 5 and w = 8. Results are summa-
rized in Table 2.

We observe that all lexicalized reordering systems achieve sig-
nificant gains over monotone, particularly on Test2 with 4 refer-
ences, ranging from 3.7% to 5.4% absolute BLEU improvements.
Secondly, increasing the reordering window size from 5 to 8 pro-
vides a generally better performance, though it is not always signifi-
cant or consistent.
Comparing different lexicalized reordering models,Q-model out-

performs slightly over P -model. This could be explained by that
the former has more tight correlations with the phrasal translation
model, as it directly models outbound probabilities of phrase end
words. For the CQ-model, we cluster all Farsi words in about 700
classes, with about 200 frequent words remain in their own exclu-
sive class. The experimental results show that CQ-model achieves
marginal but mostly consistent gains over Q-model. We speculate

that the impacts of clustering could have already been captured to
some extent by the smoothing procedure used for Q-model. Over-
all, the best performance over all test sets is obtained by using the
CQ-model and a larger reordering window.

5. SUMMARY

In this paper, we presented how lexicalized reordering models are ap-
plied in a multiple-graph based SMT system. The reordering is mod-
eled by a graph during decoding that is dynamically expanded with
respect to specified reordering models. We showed that combined
with our previously proposed Multiple-Layer Search algorithm, the
on-the-fly reordering graph computation enables us to employ flex-
ible reordering models, needless to modify the core decoder. Fur-
thermore, we proposed a number of data-driven lexicalized reorder-
ing models that we argue significantly improved system performance
over baseline monotone. Specifically, a clustered reorder model shows
some potential to help further in the presence of sparse data.
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