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ABSTRACT 

Discriminative n-gram language modeling has been used to re-rank 
candidate recognition hypotheses for performance improvements 
in large vocabulary continuous speech recognition (LVCSR).  
Discriminative n-gram modeling is defined in a linear framework. 
This work demonstrates that the linear discriminative n-gram 
model can be recast as a pseudo-conventional n-gram model if the 
order of the discriminative n-gram model is no higher than the 
order of the n-gram model in the baseline recognizer.  Thus the 
power of discriminative n-gram model can be captured by mature 
n-gram related techniques such as single-pass n-gram decoding or 
lattice rescoring.  This work utilizes the pseudo-conventional 
n-gram model to rescore the recognition lattices that are generated 
during decoding.  Compared to the discriminative N-best 
re-ranking, this process of discriminative lattice rescoring (DLR) 
has two positive advantages: (1) Those discriminatively top-ranked 
utterance hypotheses within the lattice search spaces can be 
efficiently identified by the A* algorithm; (2) The rescored lattices 
can be further enhanced with other post-processing techniques to 
achieve cumulative improvement conveniently.  Experiments 
with Mandarin LVCSR show that DLR improves efficiency – the 
computation time for 1000-best re-ranking is reduced by more than 
three-fold.  The discriminatively rescored lattices are further 
processed by re-ranking with word-based mutual information (MI).  
While the DLR achieves around 15% relative character error rate 
(CER) reductions over the recognizer baseline, the MI based 
re-ranking further brings 5% relative CER reductions over the 
DLR performances.  

 

Index Terms—Discriminative N-gram Modeling, LVCSR 

1. INTRODUCTION 

Modern LVCSR systems use the maximum likelihood criterion for 
parameter estimation.  Recently, there is a growing interest in 
adopting discriminative training methods to enhance LVCSR 
performance [1,2,3].  While maximum likelihood estimation aims 
to find the most likely model given the data, discriminative 
training attempts to minimize recognition error rate.  Various 
discriminative training approaches have been investigated for 
language modeling.  Some methods attempt to adjust the n-gram 
probabilities [4,5,6].  Other approaches discriminatively model 
linguistic features to post-process recognition outputs [7,8].  
Among these efforts in discriminative language modeling, one 
algorithm is discriminative n-gram modeling, which selects the 
counts of n-grams along with the recognition scores as features and 
defines a global linear model to distinguish among the utterance 
hypotheses in the N-best lists or recognition lattices.  This 

algorithm has been shown to be effective in [7,8,9].  It is also 
efficient in training, especially compared with discriminative 
training methods that require iterative decoding [4,6].  Previous 
work on discriminative n-gram modeling includes the use of 
weighted finite-state automata (WFA) to store the discriminative 
n-gram model [8].  By viewing a recognition lattice as an acyclic 
WFA, finding the discriminatively top-ranked path in the 
recognition lattice becomes a series of WFA operations including 
the intersection of two WFAs.  Our own previous effort [9] 
showed that discriminative n-gram modeling can effectively 
reduce the error rate especially when the training and testing 
conditions are similar.  However, we noticed two bottlenecks: 
First, the discriminative n-gram model cannot be easily integrated 
into a single pass decoding procedure.  Second, it is not 
straightforward to extend the discriminative n-gram modeling with 
other techniques to achieve cumulative improvement.  In this 
work, we recast the discriminative n-gram model into a 
representation that resembles the conventional n-gram model.  
Using this pseudo-conventional n-gram model, the power of 
discriminative n-gram modeling can be conveniently incorporated 
into a single pass decoding procedure.  Such single-pass decoding 
may deliver a recognized utterance that is not included in the 
original recognition lattice and/or N-best list.  This work uses the 
pseudo-conventional n-gram model to rescore recognition lattices.  
Within the discriminatively rescored lattices, the best hypothesis 
(i.e., the utterance hypothesis scored highest by the discriminative 
n-gram model) can be efficiently identified by A* search.  Since 
the discriminative lattice rescoring procedure outputs lattices, one 
may conveniently extend it with other post-processing techniques 
to achieve further improvements.   

This paper is organized as follows: Section 2 briefly reviews 
the discriminative n-gram modeling methodology.  Section 3 
presents the theories of representing a discriminative n-gram model 
as a pseudo-conventional n-gram model.  Section 4 discusses the 
application of this pseudo-conventional n-gram model in a new 
technique known as discriminative lattice rescoring (DLR).  
Section 5 extends DLR with another post-processing technique that 
uses word-based mutual information for N-best re-ranking.  
Section 6 describes experiment results and Section 7 gives 
conclusions.  

2. DISCRIMINATIVE N-GRAM MODELING 

This section briefly reviews the discriminative n-gram modeling 
technique, which defines a linear framework to re-rank the N-best 
recognition hypotheses [9].  The modeling process may be 
described as follows:  
• We need a training data set with n speech utterances and ni 

utterance hypotheses for each utterance. Define xi,j as the j-th 
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hypothesis of the i-th utterance. Define xi,R as the utterance 
with lowest CER among { xi,j }.  

• We need a separate test set of yi,j with similar definitions as the 
training set. 

• Define D+1 features fd(h), d=0…D, where h is a recognition 
hypothesis. The features could be arbitrary functions that map 
h to real values.   

• Define a discriminant function as: 
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The task of discriminative training thus involves a search for a 
weight vector a  that satisfies the following conditions on the 
test set:  
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For discriminative n-gram modeling, the features are the 
recognition scores� and the n-gram counts.  For each utterance 
hypothesis h, the base feature f0(h) is the recognition score which is 
the weighted summation of acoustic and linguistic likelihoods of h.  
The remaining features are the counts of each n-gram (i.e., an 
n-word sequence) in h.  We first assign each selected n-gram with 
a unique id i ( Di ≤≤1 ).  fi(h) is then defined as the count of the 
ith n-gram in h.  For instance, the unigram “new” and the bigram 
“new solutions” are assigned with ids j and k respectively.  Given 
that h is “There are new ideas and new solutions”, fj(h) is 2 and fk(h) 
is 1.  Normally, a discriminative N-gram model considers all 
n-grams with order Nn ≤ .  For example, a discriminative 
bigram model usually utilizes both unigrams and bigrams.   

The weights of the features can be trained by various 
discriminative training methods [9].  In this work, we utilize the 
average perceptron algorithm which was described in detail in [10].   

3. RECASTING THE DISCRIMINATIVE N-GRAM 
MODEL AS A PSEUDO-CONVENTIONAL N-GRAM 

MODEL 

For a given speech utterance, the discriminative n-gram model 
scores each recognition hypothesis as shown in Equation 1 and 
selects the highest-scoring hypothesis as the recognition result.  
Unchanging the ranking of hypotheses, we can modify the scoring 
method as: 
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For a discriminative N-gram model which considers all 
n-grams with order Nn ≤ , the second part of Equation 3 can be 
expanded into Equation 4.  w1w2…wm is the corresponding word 

sequence of the utterance hypothesis h.  
kiii wwwa

++ ...1
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of the n-gram (wiwi+1…wi+k).   
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The first part f0 (h) is the score that the recognizer assigned to h, 
shown as follows: 
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where P(wi|w1, w2, …,wi-1) is the log-domain LM likelihood 
provided by the language model contained in the recognizer.  
α and β are the acoustic and LM weights for the recognizer 

respectively. 
Combining Equations 4 and 5, Equation 3 can be rewritten 

as: 
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where 
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Equations 6 and 7 indicate that scoring an utterance hypothesis by 
the discriminative n-gram model is equivalent to scoring the 
hypothesis by the recognizer with a modified language model. 
Suppose the original language model incorporated in the baseline 
recognizer is a conventional n-gram model with order L.  If LN ≤ , 
we can represent the discriminative N-gram model with a 
pseudo-conventional L-gram model as shown in the equation below.  
The power of this discriminative model to distinguish among 
candidate hypotheses can be captured by the pseudo L-gram model. 
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4. INCORPORATING THE 
PSEUDO-CONVENTIONAL N-GRAM MODEL IN 

LVCSR 

By recasting the discriminative n-gram model into a 
pseudo-conventional n-gram model, we can easily incorporate this 
new language model in direct decoding for recognition or in 
rescoring recognition lattices. 

The pseudo-conventional n-gram model can be computed 
based on Equation 8 using two possible methods:  
(1) Compute the pseudo-conventional n-gram model offline.   
A complete pseudo-conventional n-gram model can be built by 
modifying the n-gram entries in the original n-gram model 
incorporated in the baseline recognizer using Equation 8.  The 
difficulty lies in the fact that the n-gram model in the recognizer 
normally does not contain all possible n-grams.  This is due to the 
usage of the back-off strategy for n-gram modeling.  Given an 
n-gram model, an n-gram probability may not be included and be 
computed via back-off to lower-order n-grams.  For example, a 
bigram not included is calculated as (9).  b(w1) is the back-off 
weight of w1.  

)()()|( 2112 wPwbwwP =                                (9) 

For n-grams that are absent from the original n-gram model but are 
updated by Equation 8, we can insert them into the model as new 
entries. But this may cause the resulting model to be too large.  
An alternative method is to keep the model size unchanged and 
adjust the related back-off weights and/or probabilities of 
lower-order n-grams.  However, the adjustment of backup weights 
and lower-order n-grams is controversial. 
(2) Compute the pseudo-conventional n-gram probabilities online 
This approach does not create a physical model and only computes 
the pseudo-conventional n-gram probabilities when they are 
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needed for either decoding or lattice rescoring.  Thus, the problem 
caused by the back-off strategy can be circumvented.  Section 4.1 
describes the details to compute the pseudo-conventional n-gram 
probabilities for lattice rescoring.  The calculation of 
pseudo-conventional n-gram probabilities for single-pass decoding 
is similar.   

4.1 Discriminative lattice rescoring 

This work uses the pseudo-conventional n-gram model to rescore 
recognition lattices.  We refer this process as discriminative lattice 
rescoring (DLR).  In a recognition lattice, each word hypothesis 
along with its acoustic and language model (LM) scores is stored in 
either a link or a node.  If the lattice is generated by a 
conventional L-gram model, the (L-1)-word history for each word 
node/link is unique.  The basic idea of DLR is to replace the 
original LM score with the pseudo-conventional n-gram probability 
for each word node/link in a lattice based on the word history.  As 
shown in Equation 8, the calculation of a pseudo-conventional 
n-gram probability is composed of two parts: (1) the score from the 
original n-gram model, and (2) the score from the discriminative 
n-gram model.  Notice that the order of the discriminative n-gram 
model must be no larger than L.  For each word node/link, the 
score from the discriminative model can be calculated easily since 
the required history is unique.  The pseudo-conventional n-gram 
probability can then be obtained by adding this score to the original 
n-gram score that has already been stored in the focused node/link.  

Having obtained the rescored lattice, the top-scoring 
utterance hypothesis can be identified efficiently by the A* search.  
This selected hypothesis is the one having the highest g(h, a ) value 
among all utterance hypotheses in the lattice search space. 

5. EXTENSION WITH OTHER POST-PROCESSING 
TECHNIQUES 

Since DLR outputs a standard lattice representation, it can be 
extended with other post-processing techniques in a convenient 
way.  In this work, we extend DLR with N-best re-ranking based 
on word mutual information (MI).  The MI based re-ranking 
procedure is applied to each utterance as follows: 
1) Select the N-best hypotheses from the corresponding lattice. 
2) Assign each hypothesis (i.e., a word sequence w1, w2, …wm ) 

with a word mutual information score: 
2
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where the mutual information MI(wi,wj) is the co-occurrence 
rate of the two words within an utterance. 

3) Score each hypothesis hypo by linear interpolation: 
)()1()()( hypoLatScorehypoMIhypoScore ⋅−+⋅= μμ      (11) 

where LatScore(hypo) is the weighted summation of the 
acoustic and language model scores extracted from the lattice.  

4) The top-scoring hypothesis is the outcome of the re-ranking 
process.  

6. EXPERIMENTS 

6.1 Corpora & baseline recognizer 

We performed the experiments on Mandarin LVCSR.  All speech 
corpora are in domain of novels.  We also utilized a 340 
mega-byte LDC corpus “Mandarin Chinese News Text corpus”, 
referred as LM_data, to train the word mutual information 
mentioned in Section 5.  Table 1 shows the information about the 
training, development, and testing sets in this study.   

  Name Utterances 

Training Set Tr_Set 84,498 

Development Set Dev_Set 2,000 

Test Set Test_Set 4,000 

              Table 1. Data sets 
The baseline LVCSR is a state-of-the-art decoder. The 

cross-word triphone acoustic models were trained on a separate 
Mandarin dictation speech corpus of about 700 hours, collected by 
considering the distribution of gender and age throughout the 
recording.  A trigram model was trained on about 28G (disk size) 
domain-balanced text corpora, using a 60606-word lexicon.  This 
baseline decoder provides a 19.86% character error rate (CER) on 
Test_Set.  We measure CER by the edit distance of character in 
this study.  

6.2 Development of the discriminative n-gram models 

We adopt discriminative bigram modeling in this study.  The 
features include the recognizer score and the counts of unigrams 
and bigrams.  Since it was shown in [7,8] that the benefit of 
adding trigram features is limited, we focus on unigrams and 
bigrams for simplicity and efficiency.  We used the lexicon 
entries in forming unigrams.  All the word pairs in the 20-best 
hypotheses of the training data Tr_Set were included as bigrams.   

With these features, we trained discriminative models on 
Tr_Set using the average perceptron algorithm.  We initialized the 
weight for the base feature (i.e., the recognition score) at 0.8.  The 
weights for other features were initialized as 0.  All the feature 
weights were updated in the following way during the training 
procedure:  We set the size of the learning step to be 0.01 and the 
iteration number at 60.  More iterations may lead to better 
performance, but we did not optimize the iterations in this study.   
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Figure 1.  Evaluation using Model_N20 
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Figure 2.  Evaluation using Model_N1000 
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We varied the number of N-best hypotheses based on the 
training set and evaluated the resulting models on the test data.  
Results show that performance increases with N, the number of 
training hypotheses used.  We selected the model trained on 
20-best hypotheses, named Model_N20, as well as the model 
trained on 1000-best hypotheses, named Model_N1000, to cover 
discriminative models with different levels of effectiveness.  
Following experiments are focused on the two models. 

6.3 Evaluation: N-best re-ranking vs. DLR 

The original application of a discriminative n-gram model is 
re-ranking the N-best hypotheses, referred as discriminative N-best 
re-ranking.  We compared the discriminative lattice rescoring 
(DLR) approach with the discriminative N-best re-ranking method 
on the Test_Set.  For either Model_N20 or Model_N1000, we 
first directly used the focused discriminative model to re-rank 
various numbers of testing N-best hypotheses.  Then, we recast 
the focused model as a pseudo-conventional trigram model and 
performed discriminative lattice rescoring.  Results for 
Model_N20 and Model_N1000 are shown in Figure 1 and Figure 2 
respectively.  For discriminative N-best re-ranking, re-ranking 
more hypotheses brings better performance for either Model_N20 
or Model_N1000, partially because the training and testing 
conditions are similar.  Performing DLR is functionally 
equivalent to re-ranking all hypotheses in the lattice space, but is 
more efficient.  For DLR, the discriminatively top-ranked 
hypothesis in a lattice is identified within 0.25s on average.  As a 
reference, discriminative 1000-best re-ranking that provides 
slightly worse performance than DLR takes 0.78s on average to 
process a speech utterance.  Re-ranking all hypotheses to find the 
best hypothesis is even more time-consuming.  In this study, all 
computing times are obtained with a Pentium 4 CPU of 3.20GHz.  
For both the DLR and N-best re-ranking, most of the computation 
is devoted to calculating discriminative scores.  The 
computational load is thus mainly determined by the number of 
word hypotheses in focus.  There are on average 2,908 word 
hypotheses (nodes/links) in a lattice and 12,120 word hypotheses in 
the N-best (N=1000) hypothesis lists of an utterance. 

6.4 Extending DLR with the word MI re-ranking  

We extended DLR with a further re-ranking procedure based on 
word MI in an attempt to achieve cumulative improvement.  We 
trained a word MI model on the LM_data using the 60606-word 
lexicon.  We then applied the MI based 100-best re-ranking on the 
baseline from the original decoder as well as on the enhanced 
baselines from the DLR lattices rescored with Model_N20 and 
Model_N1000.  For each baseline, the interpolation weight μ  

was tuned on the Dev_Set.  The re-ranking results on the Test_Set 
are shown in Table 2.  We observed several percentage points of 
relative improvement across various performance baselines, 
indicating that technique combination based on discriminative 
lattice rescoring is feasible.   

MI Re-ranking %  

Before After 

Relative 

Reduction% 

Decoder Baseline 19.9 18.5 7.0 

Model_N20 17.7 16.8 5.1 
DLR 

Model_N1000 16.3 15.5 5.0 

Table 2. CERs on various baselines 

7. CONCLUSIONS AND FUTURE RESEARCH 

This work extends the discriminative n-gram modeling technique 
by recasting the linear discriminative n-gram model in a 
pseudo-conventional n-gram model.  This recast model enables 
easy incorporation in the decoding process of speech recognition.  
Alternatively, the recast model can also be applied to rescore 
recognition lattices generated during decoding.  The best 
hypothesis (i.e., the hypothesis scored highest by the discriminative 
n-gram model) in the lattice space can thus be identified efficiently 
by A* search.  Based on the rescored lattices, the processing can 
also be extended further with additional lattice post-process. 

In this work, we use the pseudo-conventional n-gram model 
to rescore recognition lattices.  We refer this process as 
discriminative lattice rescoring (DLR).  Experiments with 
Mandarin LVCSR show that DLR can identify efficiently the best 
hypothesis in lattice, when compared to discriminative N-best 
re-ranking.  We extended the DLR processing further with 
re-ranking by word mutual information and achieved cumulative 
improvements in recognition performance.  In our future research, 
we will integrate the pseudo-conventional n-gram model into a 
single-pass decoding procedure.   
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