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ABSTRACT

We introduce in this paper a hierarchical linear discounting

class n-gram language modeling technique that has the ad-

vantage of combining several language models, trained at dif-

ferent nodes in a class hierarchy. The approach hierarchically

clusters the word vocabulary into a word-tree. The closer a

tree node is to the leaves, the more specific the correspond-

ing word class is. The tree is used to balance generalization

ability and word specificity when estimating the likelihood of

an n-gram event. Experiments are conducted on Wall Street

Journal corpus using a vocabulary of 20,000 words. Results

show a reduction on the test perplexity over the standard n-

gram approaches by 10%. We also report considerable im-

provement in the accuracy of the speech recognition task.

Index Terms— Language Modeling, n-gram, Class Hier-

archy, Linear Distortion

1. INTRODUCTION

Estimating the probability of low-frequency and unseen n-

grams is still inherently difficult when using the popular n-

gram language models (LMs). The problem becomes more

acute as the vocabulary size increases since the number of

low-frequency and unseen n-grams events increases consider-

ably. The class n-gram LMs [1] is one approach to overcome

this problem. Class n-gram LMs are more compact and gen-

eralize better on unseen n-grams compared to standard word-

based LMs. Nevertheless, for large training corpora, word

n-gram LMs are still better than class-based LMs. A better

approach is to build a language model that is general enough

to better model unseen events, but specific enough to capture

the ambiguous nature of words. Our solution is the hierarchi-

cal linear discounting class n-gram LMs. This approach com-

bines the power of word n-grams for frequent events and the

predictive power of class n-grams for unseen and rare events.

It linearly interpolates different n-gram LMs each one of them

is trained on one level of a word tree, obtained by clustering

hierarchically the word vocabulary. The leaves represent indi-

vidual words, while the nodes define clusters, or word classes:

a node contains all the words of its descendant nodes. The

closer a node is to the leaves, the more specific the corre-

sponding class is. The tree is used to balance generalization

ability and word specificity when estimating the probability

of n-gram events. The model trained on the leaves level (level

0) is the standard word n-gram LMs. Those LMs trained on a

level in the class hierarchy greater than 0 are in fact the class

n-gram LMs. The higher the number of levels in the class

hierarchy is, the more compact and general the class n-gram

LMs become.

We recently presented the backoff hierarchical class n-

gram LMs (HCLMs) that also uses a class hierarchy [2] .

HCLMs are a generalization of the backoff word n-gram

LMs [3]. When using HCLMs, the probability of an un-

seen n-gram (wi
i−n+1) is computed according to a more

specific context than the (n-1)-gram: we use the class of

the most distant word wi−n+1 followed by the other words,

F (wi−n+1), w
i−1
i−n+2; F () represents the class (parent) of x

within the class hierarchical. The approach presented in this

paper proceeds differently on the class hierarchy. It is based

on the linear interpolation smoothing technique [4], rather

than the backoff technique used by the HCLMs [2]. It has the

advantage of letting several LMs, trained at different nodes

in the class hierarchy, to contribute to estimate the likelihood

of an event, whether it is frequent, rare or unknown. This is

different from HCLMs that rely on a LM in a higher node in

the hierarchy only if the n-gram event is unknown.

The use of word tree for LMs was proposed by several

scientists [5, 6, 7, 8]. L. Bahl et al. proposed a tree-based

LM where a linear interpolation is used to smooth the relative

frequency at each node of the tree [5]: the likelihood of an n-

grams is computed as the linear interpolation of several word

class LMs. This approach has some similarities with the tech-

nique we propose here. The main difference is in the manner

the interpolation scheme is used, the way active nodes in the

tree are selected, and the technique we use to build the class

hierarchy.

2. HIERARCHICAL LINEAR DISCOUNTING
CLASS N-GRAM LANGUAGE MODELS

When using classical linearly interpolated word n-gram mod-

els, more general (n-1)-gram distribution is used to estimate

the n-gram distribution. Linear interpolation can be seen as a
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smoothing approach that allows the combination of an arbi-

trary number of distribution or even LMs. Using a recursive

representation, the classical linearly interpolated word n-gram

LMs estimate the conditional probability of a word wi given

a history wi−1
i−n+1 = (wi−n+1, ..., wi−1), according to the (n-

1)-gram distribution as follows:

P (wi|w
i−1
i−n+1) = (1 − λ(wi−1

i−n+1))fr(wi|w
i−1
i−n+1) +

λ(wi−1
i−n+1)P (wi|w

i−1
i−n+2) (1)

where λ() is positive and denotes the zero-frequency prob-

ability. The term fr() denotes the relative frequency of the

n-gram between parenthesis. The most known and original

version of the linear interpolated trigram LM [9] was not de-

fined recursively as described in equation 1. It was presented

as a linear combination of all order empirical distributions,

but it is still the same technique.

To better explore the power of word n-grams for frequent

events and the predictive power of class n-grams for unseen

or rare events, we propose the hierarchical linear discount-

ing class n-gram LMs, denoted HLDC LMs. HLDC LMs

combine discounting and redistribution according to the lin-

ear interpolation smoothing technique [4]. These models

estimate the conditional probability of an n-gram wi
i−n+1,

P (wi|w
i−1
i−n+1) according to more general distribution ex-

tracted from the class hierarchy; we use the class of the

most distant word wi−n+1 followed by the other words:

F (wi−n+1), w
i−1
i−n+2. The function F (x) represents the class

(parent) of x within the hierarchical word tree, where x can

be a class itself, or a single word, depending on its location in

the tree (cf. Section 3).

Let F j
i denote the j th parent of word wi: F j

i = F (j)(wi).
The probability P (wi|w

i−1
i−n+1) is estimated as follows:

P (wi|w
i−1
i−n+1) = (1 − λ(wi−1

i−n+1))fr(wi|w
i−1
i−n+1) +

λ(wi−1
i−n+1)P (wi|F

1
i−n+1, w

i−1
i−n+2) (2)

where P (wi|F
j
i−n+1, w

i−1
i−n+2) is recursively estimated ac-

cording to more general distribution by going up one level at

a time in the hierarchical word clustering tree:

P (wi|F
j
i−n+1, w

i−1
i−n+2) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − λ(F j
i−n+1, w

i−1
i−n+2))fr(wi|F

j
i−n+1, w

i−1
i−n+2)+

λ(F j
i−n+1, w

i−1
i−n+2)P (wi|w

i−1
i−n+2)

if F j+1
i−n+1 is the root

(1 − λ(F j
i−n+1, w

i−1
i−n+2))fr(wi|F

j
i−n+1, w

i−1
i−n+2)+

λ(F j
i−n+1, w

i−1
i−n+2)P (wi|F

j+1
i−n+1, w

i−1
i−n+2)

otherwise

(3)

As a result, the whole procedure provides a consistent way

to compute the probability of any n-gram event by exploring

the classes that are in the hierarchical word tree. If the parent

of the class F j
i−n+1 (respectively, the word wi−n+1) is the

class root, the context becomes the last (n-2) words, which

is similar to the traditional linearly interpolated word n-gram

models as described in equation 1. Based on this definition,

HLDC LMs are a generalization of the classical linearly inter-

polated word n-gram LMs: linear interpolated word n-gram

LMs can be seen as HLDC LMs with a single level (leaves)

in the hierarchical word tree.

3. HIERARCHICAL WORD CLUSTERING
ALGORITHM

The hierarchical word clustering algorithm proceeds in a top-

down manner to cluster a vocabulary word set V , and is con-

trolled by two parameters: (1) the maximum number of de-

scendant nodes (clusters) C allowed at each node, (2) the min-

imum number of words K in one class Oc: (N(Oc) ≥ K).

Starting at the root node, which contains a single cluster rep-

resenting the whole vocabulary, we build a maximum number

of C clusters to define the immediate child nodes of the root

node. We then continue the process recursively on each de-

scendant node to grow the tree. The algorithm stops when a

predefined number of levels (depth) is reached or when the

number of proposed clusters for one node Oc is equal to 1

(C = 1). The criterion used to build the word tree is based on

the work of S. Bai et al. [10] and uses a concept of minimum

discriminative information.

3.1. Minimum Discriminative Information
The clustering algorithm is based on two principles. First,

words with similar POS function are merged into the same

cluster. Second, the word cluster can be determined by the

cluster of its neighboring words (contextual information).

The contextual information of the word w, p{w}, is esti-

mated by the probability value of w given its right and left

context bigrams. To define the similarity of two words w1

and w2 in terms of their POS function or their contextual

information, we use the Kullback-Leibler distortion measure

D(w1, w2) as defined in [2].

The objective of partitioning the vocabulary is to find a set

of centroids {oc} for clusters {Oc}, c = 1, . . . C, which leads

to the minimum global discriminative information:

GDI =

C∑
c=1

∑
i∈Oc

D(wi, oc) (4)

Each cluster Oc is represented by a centroid oc, which carries

the common POS functions for the cluster. The centroid of

Oc is estimated by using the minimum distance rule [11, 2].

Since we are working in a discrete space, oc might not be a

valid word. Hence, a pseudo-centroid of a cluster Oc can be

found by looking for the closest word to oc. The reader may

refer to [2, 11] for more details regarding the estimation of

these parameters.

3.2. Word Clustering Algorithm
The standard word clustering we use in this paper is similar

to the one used previously in [2]. We assume that a word
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set is to be split into at most C classes, and that at least K
words should appear in each class Oc: N(Oc) > K . In our

case, K is set to 2. We start by computing the centroid oi

of the whole space (word set). An initial codebook is then

built by assigning the C closest words to oi into C clusters.

The cluster centroids are then recomputed, and the process is

iterated until the average distortion GDI converges [10]. The

pseudo-code of the algorithm is as follows:

• step 1: start with an initial codebook;

• step 2: for each wi, i = 1, . . . V ,

– find the closest class O to wi using Kullback-

Leibler distortion measure and add wi to it [10].

• step 3: update the codebook using the minimum dis-

tance or nearest neighbor rule [2, 11];

• step 4: if GDI > t then go to step 2

– where t is an experimentally tuned threshold

controlling the convergence of the process; the

current set of clusters may leads to the minimum

global discriminative information (cf. equation

4).

• step 5: if ∃ Oc / N(Oc) < K then (C ← C − 1) and

go to 1, else stop.

4. EXPERIMENTS

Experiments are performed on the Wall Street Journal 94-

96 text corpus with a vocabulary that includes 20,000 words

(20K). The 20K vocabulary has a 1.1% out-of-vocabulary

rate on the test data. This database is divided into training,

development and test sets. For language modeling purposes,

the training set contains 56 million words, and the test set con-

tains approximately 6 million words. A development set of 5
million words is also used to tune the different parameters of

the model, including the depth of the clustering tree. Perfor-

mance is evaluated in terms of test perplexity and word error

rate (WER) produced by our speech recognizer [12].

Figure 1 presents the performance of word n-gram LMs

and HLDC LMs with different number of levels in the class

hierarchy. The maximum number of direct descendant of a

class is fixed to C = 6 (cf. section 3). We remind that word

n-gram LMs estimated with the linear distortion technique [4]

are the HLDC LMs with a number of levels in the class hier-

archy equal to 0. Hence, we believe that it is fair to consider

word n-gram LMs as baselines for comparison purpose. Fig-

ure 1 shows also the performance of the HCLMs approach as

described in [2]. As a reminder, HCLMs are a generalization

of the backoff word n-gram LMs that uses a class hierarchy.

When the n-gram is unknown, HCLMs backoff to the class of

the most distant word wi−n+1 followed by the other words.

One of the main differences with HLDC LMs is that HCLMs

uses the class hierarchy only if the n-gram is unknown. This

is different from HLDC LMs that benefit from the different

nodes in the class hierarchy when estimating the probability

of an event. Results show that we do not need a large num-

ber of levels in the class hierarchy to converge and improve

upon the baseline: three or four levels are enough to achieve

a good performance. Figure 1 shows a 7% improvement for

bigrams (202.8 vs. 216.7) and 10% improvement for trigrams

(127.5 vs. 140.8) over the word n-gram models. It also shows

that HLDC LMs outperform HCLMs by 4% (202.8 vs. 210.6
for bigram and 127.5 vs. 132.2 for trigram). We notice that

HLDC LMs are less sensitive to the number of levels in the

class hierarchy: the perplexity value of the HCLMs decreased

for the first three levels and then it starts to increase. However,

the HLDC LMs converge to its optimum with four levels in

the class hierarchy and doesn’t increase afterward.
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Fig. 1. Trigram and bigram test perplexity with different num-

ber of levels in the class hierarchy.

We also compared HLDC LMs to word class n-gram (n-

class) LMs as well as a linear interpolation between word n-

gram and n-class LMs [9]. In the n-class models, the condi-

tional probability of the n-gram wi
i−n+1 = wi−n+1, . . . wi, is

estimated as follows:

P (wi|w
i−1
i−n+1) = P (wi|F (wi−n+1), . . . F (wi−1)). (5)

where the function F (x) represents the class of x. Notice

that the HLDC LMs is able to integrate any classification ap-

proach for building the class hierarchy. In order to make a

fair comparison between the proposed hierarchical approach

and the n-class LMs, we should use the same classification

technique. Hence, to build the class set, we use the MDI ap-

proach (§section 3.2) that assigns each word to a unique class.

We initialize the MDI classifier with a maximum number of

classes equal to 1200 assuming that one class should contains

at least 5 words. We present in table 1, the perplexity values

obtained by the different LMs on the entire test set.
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Bigram Trigram

Class 228.9 154.0
Word (Baseline) 216.7 140.8
LI (Word + Class) 215.8 138.6
HLDC 202.8 127.5

Table 1. Perplexity of world class n-gram LMs (Class), word

n-gram LMs (Word), linear interpolation of word n-gram and

n-class LMs (LI), and HLDC LMs.

As expected, the perplexity of the baseline word n-gram

LMs is better than the class word n-gram LMs: 216.7 vs.

228.9 for the bigram model and 140.8 vs. 154.0 for the tri-

gram model with the 20K vocabulary. Also, compared to the

baseline word n-gram LMs, we notice that a linear interpo-

lation of word n-gram LMs and n-class LMs doesn’t led to

a considerable improvement (215.8 vs. 216.7 for bigram and

138.6 vs. 140.8 for trigram on 20K vocabulary). On both bi-

gram and trigram, results show that the proposed hierarchical

LMs outperform the other approaches.

4.1. Speech Recognition Experiments
For ASR experiments, the word error rate (WER) on the

20K WSJ has been evaluated on the 333 sentences of the

si et 20 evaluation set. The speech recognition experiments

were performed using the ASR system described in [12]. We

gave equivalent setting to the pruning parameters to make

sure that the decoder search doesn’t favor one model over

another. Results presented in Table 2 show that there is no

significant improvement in performance between the baseline

bigram model, and HLDC bigram LM. These results can be

explained by the small number of unseen bigrams in this

experimental setup and therefore the lack of room for any

significant improvement: unseen bigrams constitute 8% of

the total bigrams. However, when the trigram model is used,

the number of unseen events increases to 34%, leading to

10% reduction of the WER.

20K
bigram trigram

Baseline 14.2% 12.4%

LI (word + class) 14.1% 12.0%

HCLM 13.9% 11.2%

HLDC 13.8% 11.0%

Table 2. WER using word n-gram, linear interpolation be-

tween word and class n-gram (LI), HCLMs, and HLDC LMs.

5. CONCLUSION
Compared to traditional n-gram LMs, the originality of the

approach introduced in this paper is in the use of a class hi-

erarchy that leads to a better estimation of the likelihood of

n-gram events. Experiments show that the HLDC LMs im-

prove the test perplexity over the standard language modeling

approaches: 10% improvement on trigram events. Speech

recognition results show up to 12% reduction of the WER

when using HLDC LMs. The magnitude of the WER re-

duction is larger than what we would have expected given

the observed reduction of the language model perplexity. A

prelimenay investigation and analysis of errors shows that

the HLDC LMs is more effective on unseen events where

the acoustic model is not able to well discriminate between

words. This leads us to an interesting assumption that the re-

duction of unseen event perplexity, where the acoustic model

is not able to well discriminate between words, is more effec-

tive for improving ASR accuracy. More work is required to

be able to confirm this.
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