
PRINCIPAL SUBSPACE MODIFICATION FOR MULTI-CHANNELWIENER FILTER IN
MULTI-MICROPHONE NOISE REDUCTION

Gibak Kim

Department of Electrical Engineering
University of Texas at Dallas
Richardson, TX 75080-3021
imkgb27@utdallas.edu

Nam Ik Cho

School of Electrical Engineering
Seoul National University
Seoul 151-744 Korea

ABSTRACT

In multi-microphone noise reduction for single desired speech sig-
nal, the principal subspace based multi-channel Wiener filter pro-
vides better performance compared with the conventional multi-channel
Wiener filter. The principal subspace vector estimates the acous-
tic transfer function vector up to a scaling factor. However, as in-
put SNR becomes lower, the error increases in the acoustic trans-
fer function vector estimation. In this paper, we propose the princi-
pal subspace modification which is controlled by the angle between
the principal subspace vector and the steering vector of the desired
speech signal. In the simulation, the proposed method is evaluated
with multi-channel speech data which are degraded by interfering
noise coming from other direction. The simulation results show that
the modification of principal subspace vector allows better perfor-
mance compared to the conventional principal subspace based multi-
channel Wiener filter.

Index Terms— Microphone array, multi-channel filtering, noise
reduction

1. INTRODUCTION

In multi-microphone system, noise can be reduced by spatial filter-
ing such as beamforming techniques when the desired speech and
noise signals arrive from different directions. Multi-microphone noise
reduction using spatial filtering provides more noise reduction and
less distortion compared to single microphone techniques. To fur-
ther reduce the residual noise, the output of beamformer can be fil-
tered by a single channel post-filter [1]. Recently, the multi-channel
Wiener filter (MWF) has been developed, which can be analyzed
as the combination of spatial filter and single channel spectral fil-
ter [2, 3].

For more efficient noise reduction, subspace based approach is
applied to the MWF, which removes noise subspace and estimates
the desired speech component from the remaining signal subspace.
In this paper, subspace decomposition is performed in the frequency
domain and the subspace vectors are obtained by joint diagonaliza-
tion of the multi-channel input spatial correlation matrix and the
noise spatial correlation matrix. The desired speech spatial corre-
lation matrix can be estimated by subtracting the noise spatial cor-
relation matrix from the input spatial correlation matrix under the
assumption that the desired speech signal is uncorrelated with noise.
Then, the principal subspace vector estimates the acoustic transfer
function vector up to a scaling factor [4]. In practical situations, the
cross correlation between the desired speech and noise may not be
zero, but can be ignored when the cross correlation is much smaller

than the desired speech power. However, in the case of low SNRs,
the cross correlation is not much smaller than the desired speech
power any more and cannot be ignored. Thus, the obtained prin-
cipal subspace vector deviates from the acoustic transfer function
vector and the performance is degraded at low SNRs. For better per-
formance at low SNRs, we propose the principal subspace vector
modification controlled by the angle between the principal subspace
vector and the steering vector of the desired speech signal. The prin-
cipal subspace vector is modified by the linear interpolation between
the original principal subspace vector and the steering vector of the
desired speech signal. Simulation results demonstrate that the modi-
fied subspace vector gets closer to the acoustic transfer function vec-
tor and the modified principal subspace based MWF provides better
performance than the conventional principal subspace based MWF.

This paper is organized as follows. Section 2 describes the multi-
channel signal model and reviews the frequency domain MWF for
noise reduction. Section 3 discusses the principal subspace vector
and proposes the modified principal subspace based MWF. Simula-
tion results and performance evaluation are shown in Section 4.

2. FREQUENCY DOMAIN MWF AND SUBSPACE
DECOMPOSITION

If there are M microphones and a single desired speech source, let
us consider an M -channel signal model where the desired speech
source is convolved withM acoustic transfer functions to every mi-
crophone. When additive noise degrades the multi-channel speech,
the multi-channel signal model is given by

yi[k] = hi[k] ∗ s[k] + ni[k] = xi[k] + ni[k] i = 1, . . . , M (1)

where yi[k] denotes the observed signal at the i-th microphone at
time k, xi[k] and ni[k] are speech and additive noise component re-
spectively, s[k] is the desired speech source, and hi[k] is the acous-
tic transfer function from the desired speech source to the i-th mi-
crophone. Assuming infinite filter lengths, (1) is represented in the
frequency domain as

Y(f) =

⎡
⎢⎢⎢⎣

Y1(f)
Y2(f)
...

YM (f)

⎤
⎥⎥⎥⎦ = S(f)

⎡
⎢⎢⎢⎣

H1(f)
H2(f)
...

HM (f)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

N1(f)
N2(f)
...

NM (f)

⎤
⎥⎥⎥⎦

= S(f)H(f) + N(f) = X(f) + N(f) (2)

where Yi(f), Hi(f), S(f), Ni(f), Xi(f) are frequency domain
representations of yi[k], hi[k], s[k], ni[k], xi[k], respectively. With
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a multi-channel noise reduction filterW(f), the output Z(f) can be
written as

Z(f) = WH(f)Y(f). (3)
Hereafter the frequency index (f) is omitted for the sake of brevity.
If we assume that the desired speech and noise signals are uncorre-
lated and estimate the desired speech component in the 1st micro-
phone signal in the minimum mean square error (MMSE) sense, the
frequency domain MWF is given by

W � R−1
YYRXXe1

� R−1
YY (RYY − RNN) e1 (4)

withRYY = E
{
YYH

}
,RXX = E

{
XXH

}
,RNN = E

{
NNH

}
,

and e1 =
[

1 0 · · · 0
]T .

By incorporating the subspace decomposition in the frequency
domain, the spatial subspaces can be taken into consideration. The
subspace decomposition can be performed by joint diagonalization
of the spatial correlation matrices RYY and RNN which can be
obtained by solving the generalized eigenvalue problem as

RYYQ = RNNQΛ, (5){
QHRYYQ = ΛY

QHRNNQ = ΛN
(6)

where Λ,ΛY,ΛN are diagonal matrices as

Λ = diag {λ1 λ2 · · · λM} (7)
ΛY = diag {λY,1 λY,2 · · · λY,M} (8)
ΛN = diag {λN,1 λN,2 · · · λN,M} (9)

with Λ = ΛYΛ−1
N , λi =

λY,i

λN,i
, λ1 > λ2 > · · · > λM and Q is

an invertible, but not necessarily orthogonal matrix. Then the spatial
correlation matrices can be expressed by the subspace matrix Q̄ as{

RYY = Q̄ΛYQ̄H

RNN = Q̄ΛNQ̄H (10)

with Q̄ = Q−H . By substituting (10) into (4) the frequency domain
MWF is obtained as

W = Q
(
I − Λ−1

Y ΛN

)
Q̄He1. (11)

3. PRINCIPAL SUBSPACE VECTORMODIFICATION

3.1. Principal Subspace Vector

When each of the frequency domain multi-channel speech compo-
nents is the multiplication of each acoustic transfer function and a
single desired speech source as shown in (2), the desired speech spa-
tial correlation matrix can be written as

RXX = E
{
XXH

}
= E {SS∗}HHH (12)

and the rank of RXX is equal to 1. From (10) and the rank-1 prop-
erty of RXX, the estimate of the desired speech spatial correlation
matrix is given by

RXX = RYY − RNN − RXN − RH
XN

� RYY − RNN
(13)

RXX � Q̄(ΛY − ΛN)Q̄H

� (λY,1 − λN,1)q̄1q̄
H
1

(14)

where RXN = E
{
XNH

}
and the desired speech signal is as-

sumed to be uncorrelated with noise and the M -dimensional prin-
cipal subspace vector q̄1 is the 1st column vector of Q̄. From (12)
and (14), note that q̄1 is an estimate of the acoustic transfer function
vector H up to a scaling factor [4]. The principal subspace based
MWF can be expressed as

W = λN,1R
−1
NNq̄1

(
λY,1 − λN,1

λY,1

)
q̄H

1 e1 (15)

{
λY,1 =

(
q̄H

1 R−1
YYq̄1

)−1

λN,1 =
(
q̄H

1 R−1
NNq̄1

)−1 . (16)

3.2. Modification of Principal Subspace Vector

For the estimation of RXX, the desired speech and noise signals
are assumed to be uncorrelated in (13). In practical situations, the
assumption may not be true, but the cross correlation between the
desired speech and noise can be ignored at high SNRs where the ab-
solute value of the cross correlation

∣∣E {
XiN

∗
j

}∣∣ is much smaller
than

∣∣E {
XiX

∗
j

}∣∣. However, in the case of low SNRs, the cross cor-
relation cannot be ignored any more, and a large error occurs in the
estimation ofRXX and consequently, q̄1 deviates fromH. To illus-
trate the closeness betweenH and q̄1 as a function of input SNR, the
angle between q̄1 and H is examined in Fig. 1. The angle between
two vectors v1 and v2 is one possible measure of the closeness and
can be defined as

� (v1,v2) = cos−1

( ∣∣vH
1 v2

∣∣
‖v1‖ ‖v2‖

)
(17)

0 ≤ � (v1,v2) ≤ π/2

where ‖·‖ denotes the vector norm. For the illustration of Fig. 1,H is
approximated as the principal eigenvector of the desired speech spa-
tial correlation matrix which is estimated using the noise-free speech
data (refer to Section 4 for the simulation data). The angle between
two vectors goes high as input SNR becomes low, which implies that
q̄1 deviates from H. Consequently, the principal subspace based
MWF does not perform well at low SNRs.

To obtain better performance of the principal subspace based
MWF at low SNRs, we propose principal subspace modification
method using the information on the direction of the desired speech
signal. First, we assume that the direction of the desired speech sig-
nal is known. Then, the angle between q̄1 and H is calculated to
measure the closeness of the two vectors. The steering vector of the
desired speech signal can be an estimate of H. The steering vector
is anM -dimensional vector as

vs =
[

1 ejϕ2 · · · ejϕM
]T (18)

in which ϕi represents the phase of the i-th microphone signal with
respect to the first microphone and can be obtained from the direc-
tion (angle) of the desired speech signal with respect to the micro-
phones, the signal frequency, and the microphone array configura-
tion [5]. Before calculating the angle between q̄1 and vs, each ele-
ment of q̄1 is divided by its absolute value as

¯̄q1 =

[
q̄1

|q̄1|
q̄2

|q̄2| · · · q̄M

|q̄M |
]T

(19)

with q̄1 =
[

q̄1 q̄2 · · · q̄M

]T . By calculating the angle be-
tween ¯̄q1 and vs instead of the angle between q̄1 and vs, we allevi-
ate the error caused by the microphone gain mismatch. Finally, the
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Fig. 1. Angle between the principal subspace vector q̄1 and the
acoustic transfer function vectorH.

principal subspace vector q̄1 is modified by the linear interpolation
between ¯̄q1 and vs as

¯̄q′
1 = (1 − α)

¯̄q1

‖¯̄q1‖
+ α

vs

‖vs‖ (20)

α =
� (vs, ¯̄q1)

π/2
. (21)

After the interpolation controlled by α, each element of ¯̄q′
1 is mul-

tiplied by each absolute value of the element of q̄1 to consider the
channel gain as

q̄′
1 = ¯̄q′

1 • |q̄1| (22)
where • denotes the elementwise product. Fig. 2 shows that the mod-
ified principal subspace vector q̄′

1 becomes closer toH at low SNRs.
After the modification of the principal subspace vector, the MWF is
calculated by (15) and (16).

4. SIMULATION RESULTS

The multi-channel signals are generated by the convolution of dry
source (sound data measured in an anechoic room) with acoustic
impulse responses from the RWCP Sound Scene Database [6]. The
desired speech and noise sources are 2 m away from the center of
microphones. The microphone array is a linear type and has 7 mi-
crophones located at 5.66 cm uniform intervals. In this simulation,
desired speech signal is convolved with the impulse response mea-
sured at the fore side of the microphone array and added by white
noise or a competing speech noise signal coming at the angle of 40◦

with reverberation time of 300 ms.
The performance is evaluated by the objective measures such as

SNR gain, speech distortion, and log spectral distortion, and mel-
frequency cepstral coefficient (MFCC) distortion. When the noise
reduction is applied to the speech recognition system, the most im-
portant measure is the MFCC distortion which is widely used as a
feature vector for the speech recognition. The log spectral distor-
tion and MFCC distortion are distortions between the desired speech
component in the 1st microphone signal and the output of MWF. The
modified principal subspace based MWF (PS-MOD) is compared
with following MWFs:

Fig. 2. Angle between the modified principal subspace vector q̄′
1

and the acoustic transfer function vectorH.

1) PS: the principal subspace basedMWFwithout mod-
ifying the principal subspace vector;
2) PS-SV: the principal subspace based MWF where
the principal subspace vector is replaced with the steer-
ing vector of the desired speech;
3) PS-SP: the principal subspace based MWF where
the principal subspace vector is replaced with the prin-
cipal eigenvector of RXX which is estimated from
noise-free speech signal.

The PS-SV MWF is equal to the minimum variance distortionless
response (MVDR) beamformer followed by a single channel Wiener
filter [3, 5]. The PS-SP MWF cannot be implemented in practical
situations since the noise-free speech signal is not accessible. It is
just evaluated for estimating the performance of the principal sub-
space based MWF when the principal subspace vector is equal to the
acoustic transfer function vector up to a scaling factor. Fig. (3) and
Fig. (5) describe the evaluation in the case of white noise, and the
results for competing speech noise case are shown in Fig. (4) and
Fig. (6). Fig. (3) and Fig. (4) show the SNR gain and the speech
distortion of each MWF. The proposed method (PS-MOD) shows
better SNR gain than other methods at the cost of similar amount
of speech distortion in the PS MWF. The log spectral distortion and
MFCC distortion are shown in Fig. (5) and Fig. (6). The PS-MOD
MWF yields better performance than the PSMWF. Although the PS-
SV MWF provides similar or slightly better performance in the log
spectral distortion than the PS-MOD MWF, the PS-SV MWF pro-
vides less improvement in terms of the MFCC distortion. The reason
is that the PS-SV MWF is more susceptible to the microphone gain
mismatch which causes more distortion at low frequencies and the
mel-scale filter bank for the MFCC has higher resolution at lower
frequencies.

5. CONCLUSIONS

In this paper, we have proposed a principal subspace modification for
the MWF. The principal subspace vector is modified by the interpo-
lation between the principal subspace vector and the steering vector
of the desired speech signal, which reduces the estimation error of
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Fig. 3. (a) SNR gain and (b) speech distortion as a function of input
SNR : white noise.
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Fig. 4. (a) SNR gain and (b) speech distortion as a function of input
SNR : competing speech noise.

the acoustic transfer function vector at low SNRs. The simulation
results demonstrate the improvement of the modified principal sub-
space based MWF.
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