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ABSTRACT
In this paper we present a new adaptive short-time Fourier analysis-
synthesis scheme and demonstrate its efficacy in speech enhance-
ment. While a number of adaptive analyses have previously been
proposed to overcome the limitations of fixed-resolution schemes,
we propose here a modified overlap-add procedure that enables effi-
cient resynthesis. Our adaptation scheme extends earlier work using
local measures of time-frequency concentration, and is applicable to
power spectral density estimation for the case of noisy speech. We
provide evidence of increased gains in signal-to-noise ratios for syn-
thetic signals as well as empirical evidence of reduced musical noise
based on expert listening tests for voiced and phonetically balanced
utterances observed in noise, relative to a standard baseline speech
enhancement system whose time-frequency resolution is fixed.

Index Terms— Analysis-synthesis, adaptive segmentation,
speech enhancement, time-frequency concentration, filterbanks

1. INTRODUCTION

Most short-time Fourier analysis-synthesis schemes used in speech
applications such as time-scale modification and enhancement em-
ploy a fixed-resolution decomposition of the time-frequency plane.
In the traditional short-time Fourier transform (STFT), the trade-off
between time and frequency resolution is controlled by a (typically
smooth, symmetric) window function whose support is ordinarily
chosen in the range 15–30 ms. It is known, however, that certain
speech sounds such as vowels are well modeled as stationary pro-
cesses over 40–80 ms segments, whereas transient events such as
plosives occur on a much shorter time scale. Controlling the time-
frequency resolution of STFT analysis in a signal-adaptive way is
therefore desirable in order to avoid smearing transients while at the
same time maximally preserving steady-state harmonic content.

In the general context of time-frequency analysis, a number of
adaptive analyses have been proposed with this goal in mind. Adap-
tive STFT schemes such as those described in [1, 2] and references
therein, however, are designed for analysis only, and lack efficient re-
construction operators. More recent work has attempted to overcome
this problem: for instance, an adaptive local trigonometric trans-
form was incorporated into a speech enhancement scheme in [3],
and [4] proposed hypothesis tests to discriminate between transient
and stationary regions. The promise of such methods for speech en-
hancement is predicated on the notion that estimates of both the local
speech and noise spectra can be made more robust through adaptive
methods that match the time-frequency structure of the underlying
speech signal [1]. This in turn may lead to lower-variance estimates
of the local speech spectrum, thus contributing to a reduction in the
well-known “musical noise” artifact [5].

In this paper, we extend the analysis method of [2] to provide
a new adaptive short-time Fourier analysis-synthesis scheme that in
turn yields a signal-dependent speech enhancement method. As de-
scribed in Section 2, our approach is based on a local measure of
time-frequency concentration introduced in [2], but with the addi-
tion of a new modified overlap-add procedure that enables efficient
resynthesis. In Section 3 we provide empirical results demonstrating
the applicability of this adaptive analysis-synthesis system to speech
enhancement. We then conclude with a brief discussion in Section 4.

2. ADAPTIVE ANALYSIS-SYNTHESIS

2.1. Time-frequency concentration

Our signal-dependent short-time analysis approach is based on an ef-
ficient adaptive scheme first proposed in [2] where spectral kurtosis
is used as a measure of the local time-frequency concentration for
each member of a set of competing STFTs generated using differ-
ent window lengths. Specifically, for a signal with STFT, Xp(t, ω),
where the parameter p indexes the length of the underlying analysis
window, the local spectral kurtosis as a function of time is given by:

C(t, p) =

∫∫ |Xp(τ, ω)w(τ − t)|4dτdω(∫∫ |Xp(τ, ω)w(τ − t)|2dτdω
)2

, (1)

where w(t) is a window centered at 0 that localizes the measure.
Maximizing time-frequency concentration as per (1) favors short-
time segments that place most of the energy in the smallest region
of the time-frequency plane. In particular, shorter windows are cho-
sen around time-localized transients such as plosives, since this will
produce the most concentrated energy distribution of the STFT coef-
ficients. On the other hand, vowels and voiced consonants, which are
oscillatory in nature, will tend to be spread over time but localized
in frequency. Thus, energy concentration will be maximized when
spectrally concentrated, temporally broad windows are used. When
spectral peaks are rapidly varying across time (due for instance to
rapid vocal tract variation in the case of speech), we have observed
that the spectral kurtosis measure tends to adapt window length to
the motion of the formant tracks—shorter windows are selected if
formants are rapidly changing.

In [2] an adaptive STFT is constructed by optimizing the in-
stantaneous window length in order to maximize the time-frequency
concentration computed in (1). In particular, to construct an adaptive
STFT from M fixed-resolution STFTs, M spectrograms are com-
puted and interpolated onto the finest time-frequency lattice. Next,
around each time coordinate in this lattice, a discretized version
of (1) is calculated for each STFT and the window length corre-
sponding to the STFT with the maximal local concentration is se-
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Fig. 1. An example of how a fixed-resolution scheme (top) is modi-
fied to achieve an adaptive time segmentation (bottom).

lected. Since the computation is done at the finest time-frequency
lattice, the resultant representation is highly redundant. As described
in Sections 2.2 and 2.3 below, we modify and extend this scheme to
enable efficient synthesis.

2.2. Iterative Clustering for Adaptive Analysis

We first describe a new adaptation scheme based on iterative clus-
tering. After computing a fixed-resolution STFT using the shortest
desired window w[n] of length 2L with frame step size of L sam-
ples, the method iteratively merges neighboring windows based on
a modified version of the time-frequency concentration measure (1).
At each iteration in the adaptation scheme, a decision is made to ei-
ther merge two adjacent short-time segments and analyze them using
a single longer window or to analyze them using distinct shorter win-
dows. In particular, consider two neighboring short-time segments
xl = x[n]wl[pL − n] and xr = x[n]wl[(p + 1)L − n], where xl

and xr denote segments centered at pL and (p+1)L respectively. We
define a new, merged, window wm centered at (p + 1/2)L used to
compute the short-time segment xm = x[n]wm[pL−n] as follows:

wm[n] = wl[pL− n] + wr[(p + 1)L− n]. (2)

An example of this is shown in Figure 1. The time-frequency con-
centration is then computed for each of the three resulting short-time
sections using:

C(xw) =

∑
k

∣∣∑
n

xw[n]e−j2πkn/N
∣∣4(∑

k

∣∣∑
n

xw[n]e−j2πkn/N
∣∣2)2

, (3)

where xw[n] indexes the short-time section xl[n], xr[n] or xm[n].
If the time-frequency concentration of the concatenated short-time
segment denoted by C(xm) exceeds the maximum of the concentra-
tions of the individual short-time segments, denoted by C(xl) and
C(xr) respectively, then we use the merged window wm instead of
wl and wr . The complete algorithm proceeds by growing each of
the individual windows in the finest-resolution scheme according to
the above criterion and is summarized in Algorithm 1.

Following [2], we use a waveform comprised of a sum of sinu-
soids, two impulses and a bump function to illustrate our analysis
scheme. Figure 2 shows a fixed (top) and adaptive (bottom) segmen-
tation, with varying widths of the superimposed rectangles corre-
sponding to the temporal extent of the underlying analysis windows
and different colors providing a visual contrast.
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Fig. 2. Fixed resolution (top) and adaptive (bottom) short-time anal-
ysis of a simple synthetic waveform.

Algorithm 1 Adaptive STFT

1. Set wl[n] = wr[n] = w[n]. Set p = q = 1

2. Compute the spectral kurtosis of the current left short-time
segment xl = x[n]wl[pL− n] by (3)

3. Compute the spectral kurtosis of the current right short-time
segment xr = x[n]wr[(p + q)L− n] using (3)

4. Set wm[n] =
∑p+q

k=p
w[kL − n] and compute the spectral

kurtosis for the combined frame xm = x[n]wm[pL− n]

5. If C(xm) > max(C(xl), C(xr)) then set wl[n] = wm[n]
and q=q+1, otherwise set p=p+q, q = 1, and set wl[n]=w[n]

2.3. Synthesis

Our second contribution is an efficient scheme for resynthesis. Even
though synthesis is theoretically possible through the inversion of the
underlying (Gabor) frame operator, to our knowledge no practical
method is known. On the other hand, the iterative approach we have
taken allows for an efficient synthesis procedure based on the well-
known overlap-add method [1]. Given a set of STFT coefficients
X(pL, k), where L is a time-decimation factor, the synthesis of a
sequence y[n] through the overlap-add method (OLA) is given by:

y[n] =
L

W (0)

∞∑
p=−∞

(
1

N

N−1∑
k=0

X(pL, k)ej 2π
N

kn

)
, (4)

where W (0) =
∑∞

n=−∞ w[n]. Perfect reconstruction (i.e., when

y[n] = x[n]) is achieved if the following OLA constraint is met:

∞∑
p=−∞

w[pL− n] =
W (0)

L
. (5)

This constraint requires that all the analysis windows form a partition
of unity; see, for example, Figure 1.

In our adaptive scheme, synthesis relies on the fact that all longer
windows were constructed using (2). Hence, at the end of the adap-
tive analysis, each selected window can be decomposed into a sum-
mation of windows that were used to compute the initial fixed-resolution
STFT. Thus, if the windows chosen for the initial STFT satisfy the
OLA constraint (5) then so does the set of variable length windows
derived through the application of Algorithm 1. Consequently, effi-
cient synthesis is possible by using the OLA procedure (4).
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Fig. 3. Performance comparison of the fixed and adaptive-resolution
systems in enhancement of a synthetic waveform as input SNR is
varied (top) or STFT analysis window lengths of are varied (bottom).

2.4. Synthetic Denoising Example

The synthesis module enables the evaluation of the adaptive short-
time scheme in a denoising setting. Here, white noise is added to the
synthetic waveform shown in Figure 2 and the standard Wiener rule,
with the spectra of the clean and noise signals given, is used for en-
hancement, so that the only differences in performance are due to the
adaptive segmentation. The fixed-resolution and adaptive schemes
utilize the windows shown in Figure 2. Figure 3 shows the SNR
gains for each scheme computed over a range of input SNRs (top)
and as the length of the analysis window for the STFT is varied in
increments of 500 samples (bottom) while input SNR was fixed at
2 dB. It is clear that the adaptive scheme not only achieves higher
gains than the fixed scheme for a range of input SNRs, but also out-
performs it regardless of what fixed window length is used. The dif-
ference between the two schemes is underscored in the spectrograms
of the denoised waveform shown in Figure 4 where we see that the
fixed-resolution scheme smears the signal components in time.

3. ADAPTIVE SPEECH ENHANCEMENT

As an example of the applicability of this new adaptive analysis-
synthesis scheme to real data, we demonstrate its performance in
the context of speech enhancement. Here, noise reduction is typ-
ically achieved through the spectral attenuation of each short-time
segment and so selecting the appropriate temporal resolution is cru-
cial. For instance, the importance of using short windows for tran-
sients is underscored in the spectrograms of the word “piecemeal”
shown in Figure 5. The onset of the plosive “p” is preserved when
our adaptive-resolution scheme is employed for enhancement, in
the manner discussed in Section 3.1, and smeared when the fixed-
resolution STFT is used. However, if we were to use the same short
window in the voiced segments, then their harmonic structure would
be smeared (noise would be suppressed in formant rather than har-
monic nulls). Indeed, the adaptive scheme uses longer windows in
voiced segments; we see in Figure 5 that the harmonic structure of
the voiced portions is preserved as well as in the fixed-resolution
scheme.

Another example of our adaptive analysis scheme is shown in
Figure 6 which depicts the fixed (top) and adaptive (bottom) time-
segmentations of the phrase “and amazed” taken from a TIMIT utter-
ance. The fixed-resolution scheme uses 20-ms triangular windows,

Fig. 4. Spectrograms of the synthetic waveform denoised by the fixed
(top) and adaptive (bottom) schemes using 512-sample Hamming
windows with 50% overlap.

while the base window size of the adaptive scheme was set to 10 ms;
the windows overlap by 50% in both schemes. It is evident that
longer windows are chosen for the voiced segments while shorter
segments are chosen for transients such as the voiced plosive “d” at
the end of the word “amazed”.

In order to appropriately evaluate our adaptive analysis-synthesis
scheme in the context of speech enhancement, we compare its per-
formance against that of a fixed-resolution scheme using a baseline
system described in Section 3.1. We report differences in SNR gain
together with results of informal listening tests aimed at assessing
whether the amount of musical noise is reduced in the signal en-
hanced by the adaptive system. As has been observed in [3] and [5],
if the adaptation is properly segmenting stationary and transient re-
gions, then the variance of the estimates of the speech spectrum is
reduced, thereby reducing the amount of musical noise present. In
particular, we show that the adaptive scheme can reduce the amount
of musical noise without relying on inter-frame smoothing, which
also implies great potential to preserve transients.

3.1. Enhancement System

We assume the standard additive observation model: y[n] = x[n] +
w[n] where x[n] is the clean speech signal, w[n] is white Gaus-
sian noise and y[n] is the resultant noisy signal. The adaptive en-
hancement system makes use of a 10-ms triangular window with
a 5-ms frame rate, as a base tiling which satisfies the OLA con-
straint (5), and uses the iterative scheme of Section 2.2 to adapt the
lengths of the analysis windows. Subsequently, the following base-
line enhancement scheme, is applied. The speech magnitude spec-
trum |X̃(ω)| is first estimated by a magnitude suppression rule given

by: |X̃(ω)| =
(

|Y (ω)|
|Y (ω)|+σw

)
|Y (ω)| where X̃(ω) is subsequently

smoothed by an 11 sample Hanning window. The noise variance σ2
w

is provided to the enhancement scheme since, in practice, it is typical
to estimate it from regions of speech absence. Finally, the enhanced
coefficients are obtained by an application of the following magni-

tude suppression rule: X̂(ω) =
(

|X̃(ω)|
|X̃(ω)|+σw

)
Y (ω).

3.2. Experimental Results and Expert Listening Tests

Using the enhancement scheme described above, we evaluate the
performance of the adaptive analysis-synthesis system and compare
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Fig. 5. Spectrograms of the utterance “piecemeal” observed in white
Gaussian noise at 0 dB SNR and enhanced using the adaptive (top)
and fixed resolution (bottom) schemes.

it to that of a fixed-resolution STFT that uses 20 ms windows with
50% overlap using a small corpus of voiced speech data collected at
MIT Lincoln Laboratory consisting of 5 male and 5 female speakers
each uttering the sentences: “Why were you away a year Roy?” and
“Nanny may know my meaning.” In addition, four phonetically bal-
anced TIMIT utterances (2 male speakers, 2 females speakers) were
added. First, we measured SNR gain obtained by both schemes for a
range of input SNRs (0–10 dB) and found that the adaptive scheme
consistently measured better (0.5–1.5 dB gain).

Adaptive System No Preference STFT

Voiced 74.3% 21.3% 4.4%

TIMIT 33.8% 53.7% 12.5%

Table 1. Summary of listener preferences from tests for the enhance-
ment scheme resulting in least musical noise. The results are aver-
aged over ten listeners and all voiced and TIMIT utterances.

We also conducted a series of informal listening tests with ten
trained listeners at MIT Lincoln Laboratory to evaluate whether us-
ing the adaptive system reduced the amount of musical noise in the
enhanced waveform as compared to a fixed resolution system. Each
listener was presented with the two voiced sentences previously de-
scribed, each spoken by two male and two female speakers, at 0 dB
and 5 dB SNR, for a total of 16 utterances. Each listener was also
presented with four TIMIT sentences (2 male speakers, 2 female
speakers) for a total of 8 utterances. For each presented waveform
the listener heard the clean and the noisy samples followed by two
repetitions of the enhanced sentences by both algorithms in a random
order. At the end of the presentation the listener was asked which of
the enhanced waveforms, if any, had musical noise. The results are
summarized in Table 1. Among the voiced data, a large majority
of responses (74.4%) indicated that less musical noise was present
in the waveforms enhanced by the adaptive system—less than 5%
preferred the fixed resolution system. The results using the pho-
netically balanced TIMIT utterances are more modest, but nonethe-
less promising. We suspect that the performance gap between the
two cases can be closed through the incorporation of a probabilistic
model of speech presence. Overall, however, the results show that
the adaptation can help reduce the musical noise artifact.
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Fig. 6. Fixed resolution and adaptive short-time analyses of the
phrase “and amazed” extracted from a TIMIT utterance.

4. DISCUSSION

In this work, we have proposed an iterative adaptive short-time anal-
ysis scheme based on a measure of time-frequency concentration to-
gether with an efficient procedure for resynthesis. We have evalu-
ated our scheme in the context of enhancement of synthetic data and
have explored its applicability in the context of speech enhancement.
Results indicate that the analysis scheme adapts well to the time-
frequency structure of speech and consequently allows for improved
enhancement as measured both by SNR and informal listening tests.
We anticipate that further improvements may be brought about by
incorporating a probabilistic model of speech presence.
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