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ABSTRACT

While state-of-the-art approaches obtain an estimate of the a priori
SNR by adaptively smoothing its maximum likelihood estimate in
the frequency domain, we selectively smooth the maximum likeli-
hood estimate in the cepstral domain. In the cepstral domain the
noisy speech signal is decomposed into coefficients related mainly
to the speech envelope, the excitation, and noise. As in the cep-
stral domain coefficients that represent speech can be robustly de-
termined, we can apply little smoothing to speech coefficients and
strong smoothing to noise coefficients. Thus, speech components
are preserved and musical noise is suppressed. In speech enhance-
ment experiments we obtain consistent improvements over the well
known decision-directed approach.

Index Terms— Speech enhancement, decision-directed ap-
proach, SNR estimation, musical noise, cepstral analysis.

1. INTRODUCTION

Many of the most successful adaptive speech enhancement algo-
rithms, e.g. those based on Wiener filtering, work in the short-
time Fourier transform (STFT) domain. A drawback of STFT-based
speech enhancement algorithms is that they yield unnatural sounding
structured residual noise, often referred to as musical noise [1]. Mu-
sical noise can be avoided by trading off against noise suppression
[2] or speech distortion [1]. Increasing the noise suppression with-
out increasing musical noise or speech distortion remains a challenge
especially in non-stationary noise.

The estimation of the a priori signal-to-noise (SNR) is a crucial
part of speech enhancement algorithms [3]. An erroneous estima-
tion of this parameter leads to speech distortion, musical noise, or
reduced noise reduction. In non-stationary noise the estimation of
the a priori SNR is particularly difficult.

In this paper we present an estimator for the a priori SNR that
distinguishes sporadic narrowband noise bursts from speech by tak-
ing into account a priori knowledge about the speech production
process. Recently, applying temporal smoothing in the cepstral do-
main was found to be a promising approach for speech enhancement
in non-stationary noise environments [4]. In the cepstral domain the
noisy speech signal is decomposed into coefficients related to the
speech envelope, the excitation, and noise. While the speech enve-
lope is always represented by the same small set of cepstral coeffi-
cients, the coefficients that represent the excitation can be found by
searching for a cepstral peak in a defined range [5]. The remain-
ing coefficients are dominated by noise. We can thus apply selec-
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tive temporal smoothing to the cepstral representation of a maxi-
mum likelihood estimate of the speech power spectral density, i.e.
strong smoothing to those coefficients that are dominated by noise,
and only little smoothing to the coefficients representing speech. We
show that the proposed method avoids spectral outliers in the resid-
ual noise signal, while the speech characteristics are preserved.

The paper is organized as follows: In Section 2 we review the
decision-directed approach [3] which is most frequently used in state-
of-the-art estimators. In Section 3 we present a novel estimation ap-
proach based on cepstral decomposition. In Section 4 we show that
the proposed approach outperforms the decision-directed approach
for non-stationary noise as well as for stationary noise in terms of
several instrumental measures.

2. REVIEW OF A PRIORI SNR ESTIMATION

We assume an additive mixture of speech, S(k, l), and noise,N(k, l),
in the STFT domain, where S(k, l) and N(k, l) are independent to
each other. Here, k is the frequency index and l is the frame in-
dex. The noisy observation, Y (k, l), is thus given by Y (k, l) =
S(k, l) + N(k, l). The a priori SNR, ξ, is defined as the ratio of the
speech power, λs(k) = E

˘
|S(k)|2

¯
, and the noise power, λn(k) =

E
˘
|N(k)|2

¯
. A maximum likelihood (ML) estimate, ξml(k, l), of

the a priori SNR given the a posteriori SNR, γ(k, l) = |Y(k,l)|2

λn(k)
,

can be obtained as [6]:

ξml(k, l) = γ(k, l)− 1 . (1)

Any deviation of |N(k, l) |2 from its expected value, λn(k), will
cause fluctuations in the ML SNR estimate, ξml(k, l). When em-
ployed in a speech enhancement framework, these fluctuations yield
an unnatural sounding residual noise. In [3], before introducing the
decision-directed approach, Ephraim and Malah derived an ML esti-
mator based on consecutive analysis frames that results in a recursive
smoothing of (1). This recursive smoothing can be interpreted as an
approximation of the true a priori SNR ξ(k, l) = E

n
ξml(k, l)

o
,

assuming that the speech signal is ergodic. However, since speech
is highly non-stationary (and hence not ergodic), recursive smooth-
ing results in a poor trade-off between fluctuations in the residual
noise and distortion of speech onsets and transients. If the recursive
smoothing constant is chosen high enough to eliminate fluctuations
in ξml(k, l), it also distorts speech onsets and transitions, resulting
in a reduced speech quality. Therefore, in state-of-the-art speech
enhancement algorithms the a priori SNR is estimated in a decision-
directed way [3, 7], i.e. based on a previous clean-speech estimate
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bS(k, l − 1):

bξ(k, l) = max

(
αdd

|bS(k, l − 1) |2bλn(k, l − 1)
+ (1− αdd)bξml(k, l) , ξmin

)
,

(2)
where bλn is the estimated noise power, and bξml is ξml using bλn.
The parameters αdd and ξmin control the trade-off between noise re-
duction and distortion of speech transients in a speech enhancement
framework [1]. The decision-directed procedure (2) allows for a fast
tracking of increasing levels of the speech power, thus effectively re-
sulting in an adaptive smoothing. Consequently, at speech onsets and
transitions, less speech distortion is introduced. However, since the
decision-directed SNR estimator is sensitive to rising spectral am-
plitudes, it does not only respond to speech onsets, but also to noise
bursts that are not tracked by the noise power estimation algorithm.
Therefore, noise bursts will cause a rising a priori SNR estimate, and
thus outliers in the residual noise of the clean-speech estimate that
are perceived as annoying musical tones. The SNR estimation ap-
proach proposed next is capable of avoiding these annoying outliers
while preserving the speech characteristics.

3. PROPOSED A PRIORI SNR ESTIMATION

From the ML SNR estimate (1) we compute the speech power

λmls (k, l) = λn max
n

ξml(k, l) , ξmlmin

o
, (3)

which is temporally smoothed in the cepstral domain. Here ξmlmin > 0

is a small lower bound which prevents ξml from taking negative val-
ues or values close to zero and thus avoids numerical difficulties in
the following steps. A cepstral representation of λmls (k, l) is calcu-
lated as

λml,cepss (q, l) = IDFT
j
log

“
λmls (k, l)

” ˛̨̨
k=0,...,(M−1)

ff
, (4)

with q = 0, ..., (M − 1) the cepstral bin index, M the length of
the inverse discrete Fourier transform (IDFT), and log(·) the natural
logarithm. Note that the symmetry condition λ

ml,ceps
s (M − q, l) =

λ
ml,ceps
s (q, l) holds. Therefore, all further modifications applied to
the cepstral bins q = 0, ..., M/2 are applied accordingly to the sym-
metric counterpart q = M/2+1, ..., (M−1). An adaptive recursive
smoothing is applied in the cepstral domain:

λs
ceps(q, l) = α(q, l) λs

ceps(q, l− 1)+
`
1−α(q, l)

´
λml,cepss (q, l) .

(5)
The smoothing factor, α(q, l), should be chosen so that only little
smoothing is applied to the low cepstral coefficients which represent
the speech envelope. Additionally, the cepstral bins which are likely
to represent the fundamental frequency, f0, should not be smoothed.

3.1. Adaptive smoothing factors

As the speech envelope is always represented by a constant set of
cepstral bins with low index (see Figure 1, q < 20), the smoothing
factor α(q, l) always has low values for q < 20 in order to protect
rapid changes in the speech spectral envelope. Nevertheless, α(q, l)
is updated for every signal frame in order to adapt the smoothing of
cepstral bins that possibly describe the fundamental frequency, f0.
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Fig. 1. Spectrogram of clean signal (top) and corresponding cep-
strum (absolute values, logarithmic scale).

After a f0 estimation (see Section 3.2), the smoothing factor
α(q, l) in (5) is obtained as

α(q, l) =

(
αpitch if q ∈ Qpitch ,

α(q, l) if q ∈ {0, ..., M/2} \Qpitch ,
(6)

where Qpitch is a set of adjacent cepstral bins that are most likely to
represent f0, and αpitch is the low smoothing constant for these bins.
α(q, l) contains information about the f0 estimation from previous
frames, and is gained as

α(q, l) = β α(q, l − 1) + (1− β) α const(q) . (7)

The smoothing constant β is the forgetting factor that determines
how fast a value of α(q, l) adapts from αpitch to α const(q), if it has
been lowered in previous frames. Thus, an estimation error of f0 in
the current frame l does not lead to an immediate strong smoothing
of the true current cepstral bin representing f0 in (5). The stationary
values α const(q) of the recursion are chosen so that little smoothing
is applied to lower cepstral bins that represent the spectral envelope
and a strong smoothing to higher cepstral coefficients except q ∈
Qpitch.

3.2. Fundamental frequency estimation

Because the cepstral coefficient that represents the fundamental fre-
quency, f0, varies over time (see Figure 1, q > 50), an f0 estimation
is employed. Here any f0 estimation algorithm found in the literature
may be considered. In our algorithm we use the method described
next: Since the power of voiced sounds is less at high frequencies,
the f0 estimation algorithm is more robust, if only the spectrum up to
a certain cut-off frequency is considered. This low-pass filtering of
the log spectrum can be achieved by convolving the cepstral frame
with a short Hamming window, wH(q), of length τH taps:

λ̄ml,cepss (q, l) = λml,cepss (q, l) ∗ wH(q) . (8)

The cepstral index qpitch(l) that most likely represents f0 is found
via a maximum search for a given frame, l, as [5]

qpitch(l) = argmax
q

˘
λ̄ml,cepss (q, l)

˛̨
qlow ≤ q ≤ qhigh

¯
, (9)

where the search is limited to possible fundamental frequencies be-
tween f0,low and f0,high, resulting in the range qlow = �fs/f0,high�
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to qhigh = �fs/f0,low�, with fs the sampling rate and �·� the floor-
ing operator towards the nearest integer number. Note that (9) only
yields meaningful results, if voiced speech is present.

We detect voiced speech sounds by means of two criteria. As
voiced speech sounds have a comparatively high energy, the first
criterion is the comparison of the cepstral peak value to a threshold,
Λthr. This guarantees that qpitch(l) represents a considerable portion
of the signal energy. The second criterion is derived from the fact
that voiced speech is spectrally tilted, thus having more energy at
low frequencies. This fact is reflected in the cepstral coefficient at
q = 1 being positive. Thus, the set of cepstral bin indices associated
with the fundamental frequency, Qpitch, is gained as

Qpitch =

8><>:
Q′
pitch if λ̄ml,cepss (qpitch, l) ≥ Λthr

AND λ
ml,ceps
s (1, l) > 0 ,

∅ else ,

(10)

where Q′
pitch = {qpitch − Δqpitch, ..., qpitch + Δqpitch} is the range

of cepstral bins that are most likely to represent the fundamental fre-
quency, Δqpitch is a small margin, and ∅ is the empty set. A suitable
value for the threshold Λthr is found from tests with representative
noisy data. Note that Λthr is not a sensitive parameter, as long as it
is chosen low enough so that no voiced speech is clipped.

3.3. log-bias correction and a priori SNR estimate

The recursive smoothing of the ML speech power estimate, λmls ,
can be seen as an approximation of the true speech power λs =
λnE{γ − 1} (cf. Section 2). However, the recursive averaging in
(5) is done in the log–domain, which results in a bias. This bias can
be corrected via the correction κ [8], as :

log
“
E

n
λmls

o”
= E

n
log

`
λmls

´o
+ κ . (11)

Assuming zero-mean complex Gaussian distributed spectral coef-
ficients, the logarithm of the correction factor, κ, equals the Eu-
ler constant, κGauss = 0.5772... [8]. Note that we only apply little
smoothing to the actual speech coefficients. Thus, our estimate will
be between the unbiased instantaneous values and the expected val-
ues biased according to (11). Consequently, we have to choose a
lower bias correction. We found that κ = 0.5 κGauss is sufficient to
obtain a good quality of the processed speech.

A smoothed estimate bλs(k, l) of the speech power in the spectral
domain is finally obtained by transforming λs

ceps(q, l) back to the
spectral domain, and by compensating for the bias:

bλs(k, l) = exp
„

κ + DFT
˘
λs
ceps(q, l)

¯ ˛̨̨
q=0,...,(M−1)

«
. (12)

With the flooring, ξmin, proposed in [1], the final a priori SNR
estimate is computed as

bξ(k, l) = max

( bλs(k, l)bλn(k, l)
, ξmin

)
. (13)

4. EVALUATION

For the evaluation we implement the proposed a priori SNR estima-
tor in a speech enhancement filter. The estimator uses parameter val-
ues as in Table 1. For comparison, we alternatively use the decision-
directed estimation approach (2) with αdd = 0.98 as proposed in

fs = 16 kHz
10 log10(ξmin) =−25dB
10 log10(ξ

ml
min) =−27dB

20 log10(Gmin) =−17dB

M = 512

Λthr = 0.2
f0,low = 70Hz
f0,high = 300Hz

Δqpitch = 2
αpitch = 0.2
β = 0.96
τH = 8

α const(q) =

8><>:
0.5 if q ∈ {0, ..., 2}

0.7 if q ∈ {3, ..., 19}

0.97 if q ∈ {20, ..., 256}

Table 1. Parameter values for the evaluated system.

[3]. The estimate bλn(k, l) of the noise power is obtained with the
method from [9]. The sampling rate of the system is fs = 16 kHz,
the frame-length isM = 512. The frameshift isM/2. Each frame is
weighted with a M -tap Hann window and transformed with a DFT
of length M . An estmate bS(k, l) = G(k, l) Y (k, l) of the clean
speech spectral coefficient S(k, l) is obtained by the Wiener filter
gain function Gwiener(k, l) = bξ(k, l) /(1 + bξ(k, l)). The gain func-
tion is floored toGmin as proposed in [2] in order to prevent musical
noise in stationary noises: G(k, l) = max{Gwiener(k, l) , Gmin}.
The enhanced time signal is finally obtained using the overlap-add
method.

We process 320 speech samples of [10, dialect region 6] that
sum up to approximately 15 minutes of fluent, phonetically bal-
anced conversational speech of both male and female speakers. The
speech samples are disturbed by several noise types. The average per
speech-sample values of the improvement of the segmental SNR, the
segmental speech SNR [11], and the segmental noise reduction [11]
are given in Figure 2. With the proposed method consistent improve-
ments of the segmental SNR are obtained. The noise suppression is
virtually identical for the stationary noises, as in low SNR conditions
the limiting constant Gmin comes into effect rendering Gwiener(k, l)
without effect. Nevertheless, in non–stationary babble noise, noise
bursts result in estimation errors in the case of the decision-directed
approach, while the proposed method prevents such outliers, thus
obtaining a better noise reduction. In terms of the speech distor-
tion measure, i.e. speech SNR, the cepstral approach yields better
results for all noise types. Note that in the case of babble noise,
an improvement for both speech distortion and noise reduction is
obtained simultaneously. In Figures 1 and 3, spectrograms of the
sentence “Please shorten this skirt for Joyce.” (female voice) are
shown for a stationary and a non-stationary noise. The proposed
method notably preserves plosives (time t = 2.1 s), vowels (e.g.
t = 2.3 s) and the envelope of fricatives (e.g. t = 4.2 s for white
noise). At the same time, musical noise due to narrow-band bursts in
non-stationary noise – like in babble noise – is effectively prevented.

Informal subjective listening reveals that signals processed with
the filter using the proposed a priori SNR estimator sound clearer in
the case of white Gaussian and speech shaped noise, as more low–
energy speech components are preserved. As for the residual noise,
in the case of white and speech shaped noise, neither approach pro-
duces musical noise. For babble noise, the speech signals of both
approaches sound similar, but the new approach is able to suppress
musical noise even during speech presence.

5. CONCLUSION

For speech enhancement frameworks, smoothing the maximum like-
lihood estimate of the signal-to-noise ratio is indispensable for the
suppression of musical noise. We show that a temporal smoothing
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Fig. 3. Spectrograms of noisy signals at 0dB segmental SNR (left), of signals filtered using the decision-directed approach (center), and of
signals filtered using the cepstral approach (right). The noises are stationary white Gaussian noise (top row) and babble noise (bottom row).
The color coding is the same as in Figure 1 (top) which shows the spectrogram of the clean signal.
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Fig. 2. Averages of segmental SNR improvement (top), noise reduc-
tion (middle), and speech SNR (bottom) for 320 TIMIT sentences
and different noise types. The noises are white stationary Gaussian
noise, speech shaped noise, and babble noise.

in the cepstral domain is superior to a temporal smoothing in the
frequency domain. In the cepstral domain we can exploit a priori
knowledge about speech production and thus selectively smooth the
coefficients that most likely represent noise and those that represent
speech. The proposed estimator consistently outperforms the well
known decision-directed approach for a priori signal-to-noise ratio
estimation in terms of output segmental signal-to-noise ratio, spec-
tral distortion and noise reduction in non–stationary noise. Informal
listening shows that the proposed estimator yields a clearer speech
signal and, especially in non-stationary noise environments, a more
natural sounding residual noise without musical noise.
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