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ABSTRACT

This paper proposes an adaptive noise suppression method for non-
stationary noise based on the Bayesian estimation method. The fol-
lowing conditions are assumed: (1) Speech and noise samples are
statistically independent, and they follow auto-regressive (AR) pro-
cesses. (2) The prior distribution of the parameters of the noise AR
model of a current frame is identical to the posterior distribution of
those parameters calculated in the previous frame. Under these con-
ditions, the proposed method approximates the joint posterior distri-
bution of the AR model parameters and the speech samples by using
the variational Bayesian method. Furthermore, we describe an effi-
cient implementation by assuming that all involved covariance ma-
trices have the Toeplitz structure. The proposed method was tested
on real speech and noise signals and compared with other noise sup-
pression methods.

Index Terms— Noise suppression, Bayesian estimation, varia-
tional Bayesian method, auto-regressive process

1. INTRODUCTION

The task of suppressing noise in degraded speech signals observed
at microphones has been of great interest for decades. Noise sup-
pressors working in realistic environments must be able to cope with
non-stationary noise. Traditional noise suppression methods that are
based on voice activity detectors (VADs) are unable to suppress non-
stationary noise very much because they update noise estimates only
during periods when speech is absent. As a result, adaptive noise
suppression methods that can update noise estimates even during
speech activity have been studied in the last decade.
One approach to adaptive noise suppression is based on statisti-

cal models of speech and noise [1, 2, 3]. The statistical model based
approach estimates the model parameters or the speech signals from
the observed noisy speech signals by using the maximum likelihood
(ML) estimation method, the Bayesian estimation method, or the
like. Auto-regressive (AR) models are usually employed for both
the speech and noise models. The statistical model based approach
seems to produce less distorted speech signals than the minimum
statistics based approach [4]. This may be partly because the mini-
mum statistics based approach estimates noise power spectral com-
ponents independently for each frequency bin, and partly because
this approach involves spectral smoothing, which makes speech sig-
nals reverberant.
The statistical model based methods are further classified into

two categories. One requires the speech and noise models to be
trained in advance [1, 2]. The methods in this category fail to recover
the speech signals contaminated by noise signals out of the training
data. The other estimates both the model parameters and the speech
signals online without the need for prior training of the models [3].

However, the methods in this category are, as far as we know, based
on the ML estimation method, which is in principle inferior to the
Bayesian estimation method.

In this paper, we propose an adaptive noise suppression method
that performs the Bayesian estimation of the model parameters and
the speech signals. That is, the proposed method calculates the joint
posterior distribution of the AR parameters and the speech signals
on a frame-by-frame basis. The proposed method assumes that the
speech and noise signal samples follow auto-regressive (AR) pro-
cesses. Moreover, the prior distribution of the parameters of the
noise AR model of a current frame is assumed to be identical to the
posterior distribution of those parameters calculated in the previous
frame. Since it is difficult to derive the exact posterior distribution,
in reality, the proposed method approximates the true posterior dis-
tribution by using the variational Bayesian method [5]. Furthermore,
we describe an efficient implementation of the proposed method,
resulting in only a slightly higher computational cost than the ML
estimation method. Note that the proposed method can be distin-
guished from the method described in [6], which is also based on the
variational Bayesian method, in that the proposed method does not
assume the noise to be stationary.

2. BAYESIAN APPROACH TO ADAPTIVE NOISE
SUPPRESSION

2.1. Task formulation of adaptive noise suppression

Let st(n), vt(n), and xt(n) denote a speech sample, a noise sample,
and an observed noisy speech sample, respectively, in the t-th short
time frame of lengthN . The vector of the noisy speech samples con-
tained in the t-th frame, �

t = [xt(N), · · · , xt(1)]
T , is represented

by

�
t = � t + � t, (1)

where � t = [st(N), · · · , st(1)]
T , � t = [vt(N), · · · , vt(1)]

T , and
superscript T is the transpose operator. The noise suppression task
addressed in this paper is to estimate the speech samples of the t-th
frame, � t, from the observed noisy speech samples up to the t-th
frame, � t

1 = { �
u}1≤u≤t.

If we are to solve the noise suppression task, we must introduce
some constraints on the speech and noise. In this paper, we assume
the following conditions.

(a1) The speech sample st(n) follows an auto-regressive (AR)
process of order P . Thus, the probability density function
(PDF) of st(n) conditioned on the past P samples � P

t (n −
1) = [st(n−1), · · · , st(n−P )]T , the regression coefficient
vector � t = [at,1, · · · , at,P ]T , and the innovation variance
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σ2
t is given by

p(st(n)| � P
t (n− 1), � t, σ

2
t )

= N{st(n); � P
t (n− 1)T � t, σ

2
t }, (2)

where N{ � ; � , Σ} denotes the PDF of a random variable �
following the normal distribution with mean � and covari-
ance matrix Σ. We hereafter represent the parameters of this
speech model by Φt = { � t, σ

2
t }.

(a2) The noise sample vt(n) follows an AR process of order Q.
Thus, the PDF of vt(n) conditioned on the past Q samples� Q

t (n − 1) = [vt(n − 1), · · · , vt(n − Q)]T , the regression
coefficient vector � t = [bt,1, · · · , bt,Q]T , and the innovation
variance γ2

t is given by

p(vt(n)| � Q
t (n− 1), � t, γ

2
t )

= N{vt(n); � Q
t (n− 1)T � t, γ

2
t }. (3)

We hereafter represent the parameters of this noise model by
Ψt = { � t, γ

2
t }.

(a3) st(m) and vu(n) are mutually independent random variables
for any t, u, m, and n. Φt and Ψu are also random variables
that are independent of each other.

Under the above assumptions, the conditional distribution of �
t and

the conditional distribution of � t are characterized respectively by

p( �
t| � t, Ψt) =

N�
n=1

N{xt(n); st(n) + ( � Q
t (n− 1)

− � Q
t (n− 1))T � t, γ

2
t } (4)

p( � t|Φt) =

N�
n=1

N{st(n); � P
t (n− 1)T � t, σ

2
t }. (5)

In addition to the above, we further assume the following conditions
as regards the dynamics of the parameters of the speech and noise
models.

(a4) The parameters of the noise model vary so slowly that the
prior distribution ofΨt given

� t−1
1 is identical to the posterior

distribution of Ψt−1 given
� t−1

1 , i.e.

p(Ψt| � t−1
1 ) = p(Ψt−1| � t−1

1 ). (6)

Furthermore, this distribution is assumed to be the conjugate
distribution as follows:

p(Ψt| � t−1
1 ) =N � � t; 
 v,t−1, � ζv,t−1Ξv,t−1

γ2
t � −1 


× χ−2{γ2
t ; ρv,t−1, λv,t−1}, (7)

where χ−2{ξ2; ρ, λ} denotes the PDF of a random variable
ξ2 following the scaled inverse chi square distribution with
degree of freedom ρ and scale parameter λ. The choice of the
conjugate prior is for mathematical tractability.

(a5) The prior distribution of the speech model parameters Φt

given � t−1
1 is free from � t−1

1 and is independent of the frame
index t. Specifically, the prior distribution is given by

p(Φt) =N � � t; 
 s
′, � ζ′

sΞ
′
s

σ2
s � −1 


χ−2{σ2
t ; ρ′

s, λ
′
s}, (8)

where we let ζ ′ and ρ′ be a very small value to make the prior
distribution non-informative.

Under the above conditions, we shall estimate � t from
� t

1.

2.2. Bayesian approach

In this paper, we approach the above task based on the Bayesian
estimation. The goal of the Bayesian estimation is to estimate the
joint posterior distribution of the speech samples � t and the param-
eters Θt = {Φt, Ψt} of the t-th frame, p( � t, Θt| � t

1). The posterior
distribution can be factorized as

p( � t, Θt| � t
1) ∝ p( �

t| � t, Ψt)p( � t|Φt)p(Φt)p(Ψt| � t−1
1 ). (9)

The terms of the right hand side of (9) have been already defined
in (4), (5), (8), and (7). Moreover, by integrating out � t and Φt

from (9), we obtain the posterior distribution for the t-th frame,
p(Ψt| � t

1), which is used as the prior distribution for the (t + 1)-
th frame, p(Ψt+1| � t

1). Importantly, with the variational approxi-
mation described in the next section, p(Ψt| � t

1) has the same form as
p(Ψt| � t−1

1 ) by virtue of p(Ψt| � t−1
1 ) being conjugate. Thus, in prin-

ciple, every time noisy speech samples of a new frame are observed,
we can obtain the posterior distribution of the speech samples and
the parameters of that frame adaptively.

3. ALGORITHM BASED ON VARIATIONAL BAYESIAN
METHOD

3.1. Variational Bayesian method

We employ the variational Bayesian method, which approximates
the posterior distribution p( � t, Θt| � t

1) because it is difficult to de-
rive the analytic form of p( � t, Θt| � t

1). The difficulty arises from the
fact that � t is a hidden variable in the model that generates observed
variable �

t. The variational Bayesian method approximates the true
posterior distribution p( � t, Θt| � t

1) by using the hypothetical poste-
rior distribution of the following factorized form:

q( � t, Θt) = q( � t)q(Θt). (10)

q( � t) and q(Θt) are calculated so that the Kullback-Leibler (KL)
divergence between p( � t, Θt| � t

1) and q( � t, Θt) is minimized.
Such q( � t) and q(Θt), which are called optimal variational pos-

terior distributions, can be proven to satisfy

q( � t) ∝ exp{〈log p( �
t, � t|Θt)〉q(Θt)} (11)

q(Θt) ∝p(Θt| � t−1
1 ) exp{〈log p( �

t, � t|Θt)〉q( � t)}, (12)

where the complete data likelihood p( �
t, � t|Θt) is obtained by mul-

tiplying (4) and (5). It is obvious that these two conditions are depen-
dent on each other. Therefore, the variational Bayesian method first
calculates q( � t) according to (11) for a fixed q(Θt), and then cal-
culates q(Θt) for a fixed q( � t) according to (12). q( � t) and q(Θt)
are obtained by repeating these two steps until convergence. Below
we derive specific forms of the optimal variational posterior distri-
butions q(Θt) and q( � t).

3.2. Optimal variational posterior distribution of parameters

It is shown that substituting (4) and (5) into (12) leads to

q(Θt) =N � � t; 
 s,t, � ζs,t
Ξs,t

σ2
t �

−1 

χ−2{σ2

t ; ρs,t, λs,t}

×N � � t; 
 v,t, � ζv,t
Ξv,t

γ2
t �

−1 

χ−2{γ2

t ; ρv,t, λv,t}. (13)
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In (13), the hyperparameters of the speech model (the first line of
(13)) are defined as follows.

ζs,t =N + ζ ′
s (14)

Ξs,t =
NRs,t + ζ′

sΞ
′
s

N + ζ′
s

(15)

� s,t =Ξ−1
s,t � s,t (16)

ρs,t =N + ρ′
s (17)

λs,t =λ′
s + Nrs,t + ζ′

s � ′
s
T
Ξ′

s � ′
s − (N + ζ ′

s) � T
s,tΞ

−1
s,t � s,t, (18)

where

� s,t =
N � s,t + ζ′

sΞ
′
s � ′

s

N + ζ′
s

. (19)

Rs,t, � s,t, and rs,t that appear in (14) to (19) are respectively the
P -th order autocovariance matrix, the one-sample delayed autoco-
variance vector of order P , and the variance of the speech samples
{st(n)}1≤n≤N expected on q( � t):

Rs,t =
1

N

N�
n=1

〈 � P
t (n− 1) � P

t (n− 1)T 〉q( � t) (20)

� s,t =
1

N

N�
n=1

〈st(n) � P
t (n− 1)〉q( � t) (21)

rs,t =
1

N

N�
n=1

〈st(n)2〉q( � t). (22)

As shown later, q( � t) is a normal distribution with mean � t and
covariance matrix Υt. Hence, the expected product of st(n) and
st(m) that constitute Rs,t, � s,t and rs,t can be calculated as

〈st(m)st(n)〉q( � t) = μt(m)μt(n) + υm,n, (23)

where μt(n) is the (N −n+1)-th component of � t and υm,n is the
(N −m + 1, N − n + 1)-th component of Υt. Recall and note that
the elements of � t are arranged in time-descending order.
The hyperparameters of the noise model are defined in the same

way as those of the speech model given by (14) to (19). To take the
nonstationarity of noise into account, however, we propose multiply-
ing the hyperparameters of the prior distribution of the noise model
parameters by forgetting factor α. Thus, the update equations for the
hyperparameters of the noise model are as follows.

ζv,t =N + αζv,t−1 (24)

Ξv,t =
NRv,t + αζv,t−1Ξv,t−1

N + αζv,t−1
(25)

� v,t =Ξ−1
v,t � v,t (26)

ρv,t =N + αρv,t−1 (27)

λv,t =αλv,t−1 + Nrv,t + αζv,t−1 � v,t−1
T Ξv,t−1 � v,t−1

− (N + αζv,t−1) � T
v,tΞv,t � v,t, (28)

where

� v,t =
N � v,t + αζv,t−1Ξv,t−1 � v,t−1

N + αζv,t−1
(29)

Rv,t, � v,t, and rv,t in (24) to (29) are respectively the Q-th or-
der autocovariance matrix, the one-sample delayed autocovariance
vector of order Q, and the variance of the noise samples {xt(n) −

st(n)}1≤n≤N expected on q( � t). These are given in the same way
as (20) to (22).
To summarize this subsection, once the posterior distribution of

the speech samples, q( � t), is given, the posterior distribution of the
parameters is updated by updating its hyperparameters according to
(14) to (18) and (24) to (28).

3.3. Optimal variational posterior distribution of speech sam-
ples

Next, let us derive the update procedure for q( � t) given q(Θt). By
substituting (4) and (5) into (11), we finally have

q( � t) =N{ � t; � t, Υt}. (30)

The covariance matrix Υt and the mean � t are defined respectively
as follows:

Υt = � ρs,t

λs,t
AT

t At +
1

ζs,t
Ωs,t +

ρv,t

λv,t
BT

t Bt +
1

ζv,t
Ωv,t 	

−1

(31)

� t = � ρv,t

λv,t
BT

t Bt +
1

ζv,t
Ωv,t 	 Υt



t, (32)

where At and Bt are N -th order upper triangular Toeplitz matrices
whose first rows are respectively

[

P+1� � � �
1,− � T

s,t,

N−P−1� � � �
0, · · · , 0], and [

Q+1� � � �
1,− � T

v,t,

N−Q−1� � � �
0, · · · , 0]. (33)

Ωs,t is defined as follows. LetΩs,t(n) denote theN -th order matrix
whose P -th order submatrix beginning from the (N − n + 1, N −
n+1)-th component is equal to Ξ−1

s,t and whose components outside
the submatrix are all zero. Now, Ωs,t is defined as

Ωs,t =
N�

n=1

Ωs,t(n− 1). (34)

The definition of Ωv,t is similar to that of Ωs,t. Therefore, the poste-
rior distribution of the speech samples, q( � t), is updated by updating
its mean � t and covariance matrixΥt according to (32) and (31), re-
spectively, when the posterior distribution of the parameters q(Θt)
is given.
It is noteworthy that if we ignore Ωs,t and Ωv,t, the mean � t

is the minimum mean square error (MMSE) estimate of � t under
the condition that the parameters Θt are deterministic as � t = � s,t,
1/σ2

t = ρs,t/λs,t, � t = � v,t, and 1/γ2
t = ρv,t/λv,t. Furthermore,

the covariance matrix Υt corresponds to the associated error covari-
ance matrix. The terms Ωs,t/ζs,t and Ωv,t/ζv,t reflect the degree of
uncertainty of the parameters Θt.

3.4. Efficient Implementation

Based on the above derivation, the proposed method is summarized
as follows.

(s1) Initialize the hyperparameters of the posterior distribution of
the speech and noise models, ζs,t, Ξs,t, � s,t, ρs,t, λs,t, ζv,t,
Ξv,t, � v,t, ρv,t, and λv,t.

(s2) Update the mean � t and covariance matrixΥt of the posterior
distribution of the speech samples according to (32) and (31),
respectively.

(s3) Update the hyperparameters according to (14) to (18) and
(24) to (28).
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(s4) Unless convergence is reached, return to (s2).

The above algorithm can be implemented efficiently in the fol-
lowing two respects.

• We suppose that both�
∗ � T

s,t� s,t Ξs,t � and �
∗ � T

v,t� v,t Ξv,t � , (35)

where ∗ denotes a certain value, are symmetric Toeplitz ma-
trices. Let us represent the first column of the former ma-
trix by [r̄s,t(0), · · · , r̄s,t(P )]T . Then, � s,t and λs,t of (16)
and (18) are calculated by applying the Levinson-Durbin al-
gorithm [7] of order P to {r̄s,t(0), · · · , r̄s,t(P )}. � v,t and
λv,t of (26) and (28) can also be calculated by using theQ-th
order Levinson-Durbin algorithm.

• We suppose thatAT
t At,Ωs,t,B

T
t Bt, andΩv,t are all Toeplitz

matrices. Then, � t and Υt of (32) and (31) can be calculated
in the frequency domain. Moreover, based on the result de-
scribed in [8],Ωs,t is found to be calculated from the (P−1)-
th order regression coefficients for {r̄s,t(0), · · · , r̄s,t(P −
1)}. Surprisingly and fortunately, the (P−1)-th order regres-
sion coefficients have already been obtained in the calculation
of � s,t. The same holds for Ωv,t.

4. EXPERIMENTAL RESULTS

We conducted experiments to evaluate the performance of the pro-
posed method. Japanese utterances of five males and five females
were taken from the JNAS database. The sampling frequency was
8 kHz. The speech signals of these utterances were contaminated
by eight types of additive noise with a signal to noise ratio (SNR)
of 10 dB, which were taken from the AURORA-2 database. The
system parameters were set as follows: the frame size N was 256
samples, the frame shift was 128 samples, the window function was
a Hanning window, the order of the speech AR model, P , was 12,
the order of the noise AR model, Q, was 6, and the forgetting factor
α was 0.9.
The proposed method was compared with the minimum statis-

tics based method of [4] and the ML estimation based method. The
ML estimation based method is derived by forcing Ωs,t and Ωv,t

of (31) and (32) to be zero matrices. The noise suppression per-
formance was evaluated by using the segmental SNR (SSNR) and
the segmental Itakura-Saito distortion (SISD) measure. The SSNR
and SISD were calculated by using median SNRs and ISDs for each
frame as in [3] to mitigate the influence of outliers.

Figs. 1 and 2 show the experimental results. It can be seen that
the proposed method achieved the best performance in terms of both
measures. The reason for the high SISDs of the minimum statistics
based method may be that the method is likely to introduce spectral
distortion owing to spectral smoothing. Hence, it can be concluded
that the proposed method is able to suppress non-stationary noise
while reducing spectral distortion.

5. CONCLUSION

In this paper, we have described a Bayesian method for estimating
the parameters of speech and noise AR models and speech signals.
The variational Bayesian method was used to obtain the approxi-
mate posterior distribution of the parameters and the speech signals.
An efficient implementation was also developed by assuming the
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Fig. 1. Average SSNRs for each noise type. Greater SSNRs indicate
better performance.
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Fig. 2. Average SISDs for each noise type. Smaller SISDs indicate
better performance.

Toeplitz structure for all involved covariance matrices. Experimen-
tal results showed that the proposed method performed better than
alternative methods in terms of SSNR and SISD.
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