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ABSTRACT

The SPLICE method of feature enhancement is known for

its powerful performance. It learns a mapping from noisy

to clean feature vectors given a set of stereo training data.

However, feature vector variation caused by speaker changes

conceals noise-induced variation, which is what we want to

find in the SPLICE training. In this paper, an improvement

of SPLICE by means of speaker-normalization is proposed.

The training data is first normalized with respect to speaker

variation, and a mapping is learned afterward. CMLLR with

a GMM as its target is utilized for the speaker-normalization,

where the GMM representing a standard speaker is learned

via a novel variant of the speaker adaptive training. The pro-

posed method was evaluated on Aurora2, and achieved a rel-

ative word error rate reduction of 38% over the conventional

SPLICE.

Index Terms— Feature enhancement, SPLICE, speaker

normalization, speaker adaptive training, robust speech recog-

nition.

1. INTRODUCTION

The performance of speech recognition systems degrades in

noisy conditions, which is a primary issue in utilizing the sys-

tems in real world [1]. A large number of techniques have

been developed over the past decades to increase the noise

robustness of the systems. Many of those techniques adopt

the approach of feature enhancement, which is a technique

to restore clean feature vectors from noisy ones. Examples

of this approach include the spectral subtraction, the mini-

mum mean-square error short-time spectral amplitude estima-

tor [2], the vector Taylor series technique [3], and the SPLICE

(Stereo-based Piecewise Linear Compensation for Environ-

ments) [4].

The SPLICE is a method of feature enhancement, and is

known for its powerful performance in noisy environments.

The method works as follows. In the training phase, given

a set of stereo training data collected in some noise envi-

ronment, the method learns a piecewise linear mapping from

noisy to clean feature spaces. A set of mappings are learned,

one for each noise environment. In the test phase, given a

sequence of noisy vectors, the most likely environment is se-

lected first, and the mapping of the selected one is applied

to the noisy vectors to clean them up. In summary, SPLICE

learns and normalizes the variation induced by noises to im-

prove the performance of speech recognition systems in noisy

conditions.

However, speaker variation of the training data affects the

process of SPLICE training, and degrades the speech recog-

nition performance as a consequence. The training data of

SPLICE is usually collected from a large variety of speak-

ers, and a non-negligible amount of feature vector variation

is induced by speaker changes. This variation conceals the

noise-induced variation, which is what we want to find in the

SPLICE training.

To remedy this problem, we propose an improvement of

SPLICE by means of speaker normalization. First, all the

training data is processed to normalize the speaker character-

istics of feature vectors. Then, the SPLICE training is con-

ducted to find a set of mappings, one for each environment.

By removing the speaker-dependent variation first, noise in-

duced variation can be found more clearly. We refer to this ap-

proach the speaker-normalized SPLICE. To normalize speaker

characteristics, CMLLR (constrained maximum likelihood lin-

ear regression) [5, 6] is utilized in this study, where a Gaus-

sian mixture model representing a standard speaker is used

as a target of CMLLR. A novel variant of the speaker adap-

tive training [7, 6] is also proposed to construct the standard

speaker model more robustly, particularly effective in the case

when the training data is highly noisy.

2. METHOD

2.1. Conventional SPLICE

The SPLICE learns a map from noisy to clean feature vectors

given a set of stereo training data, which is typically created

by artificially adding noises to a set of clean utterances. A

Gaussian mixture model (GMM) is first constructed from the

noisy training data. Then, for each mixture component k of
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Fig. 1. The SPLICE training process. White and black points

represent clean and noisy training data, respectively.

the GMM, a correction vector rk is trained as

rk =
∑

i p(k|yi)(xi − yi)∑
i p(k|yi)

, (1)

where {xi} and {yi} are the clean and noisy vectors, respec-

tively. A piecewise linear mapping is formed with those cor-

rection vectors to get an estimate of a clean vector x̂ from a

noisy one y as

x̂ = y +
∑

k

p(k|y)rk. (2)

Figure 1 depicts the SPLICE training process. The feature

space is split into regions (three in this figure), and a cor-

rection vector is learned for each of them to form a piece-

wise linear mapping. Note that a hard split of regions is

used to simplify the figure. For each noisy environment, one

SPLICE mapping is constructed as described above. In the

test phase, the most likely environment e∗ is first selected as

e∗ = arg maxe p(Y |e), where Y = {y1 . . . yT } is a noisy

vector sequence of length T , e is an environment index, and

the likelihood is calculated with the GMM of e. The SPLICE

mapping of the selected environment is used to clean-up the

vectors.

2.2. Speaker-normalized SPLICE

The SPLICE training is a process to find noise-induced vari-

ation of feature vectors (i.e., correction vectors). Since the

performance level of a training-based system like SPLICE

is heavily dependent on training data, training data is usu-

ally collected from a wide variety of speakers so as to make

the system robust against speaker changes. However, a non-

negligible amount of feature vector variation is induced by the

Fig. 2. Variation induced by speaker changes, depicted by

rotation and shift of the feature space.

speaker changes. We model a speaker-dependent variation by

an affine transformation of feature space as

xr = Arxs + br, (3)

where xs and xr are feature vectors of a standard speaker s
and a particular speaker r respectively, and matrix Ar and

vector br specify the affine transformation. Figure 2 depicts a

speaker-dependent transformation of feature space. As can be

seen from the figure, due to the speaker-dependent transfor-

mation, noise-induced variation (i.e., correction vectors) can-

not be seen clearly. The speaker-dependent variation conceals

the noise-induced variation, and interferes in the SPLICE train-

ing process.

To remedy this problem, speaker variation is normalized

beforehand of the SPLICE training. By doing so, correction

vectors can be learned more clearly. This is the basic idea of

the proposed speaker-normalized SPLICE approach. In the

training phase of the proposed method, training data, both

clean and noisy, are processed to normalize speaker character-

istics, and the SPLICE mappings are learned afterward (Fig-

ure 3). Note that region splitting is omitted in the figure for

simplicity. In the test phase, the input vectors are first pro-

cessed to normalize speaker characteristics, and are then pro-

cessed with SPLICE to normalize noise characteristics.

Conventionally, the cepstral mean normalization (CMN)

or the histogram equalization is used prior to SPLICE to nor-

malize channel characteristics. These techniques have the ef-

fect of speaker normalization, and can be seen as examples of

the speaker-normalized SPLICE approach. In this paper, we

use more dedicated and powerful method for speaker normal-

ization. That is CMLLR.

Fig. 3. The training process of speaker-normalized SPLICE.

2.3. Speaker-normalized SPLICE with CMLLR

To normalize speaker characteristics, we use the CMLLR tech-

nique beforehand of SPLICE. A GMM representing a stan-

dard speaker model is used as a target of CMLLR. Given a

sequence of noisy feature vectors, an affine transformation

maximizing the likelihood against the standard speaker model

is estimated with CMLLR, and used to normalize the feature

vectors.

The training of speaker-normalized SPLICE with CM-

LLR goes as follows (Figure 4a). First, affine transformations

for speaker normalization are found, one for each speaker, via
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Fig. 4. The speaker-normalized SPLICE system: (a) in train-

ing, and (b) in test.

the speaker adaptive training (SAT) with CMLLR and GMM.

A clean dataset is used to conduct SAT, because speaker-

dependent variation can be estimated more reliably without

the interference of noise-induced variation of feature vectors.

Note that SAT outputs transforms and a standard speaker GMM,

but the GMM is discarded here, since the GMM trained with

clean data does not match with noisy test data. The obtained

transforms are then applied to both clean and noisy training

data, and the resultant speaker-normalized stereo data is used

to train the SPLICE mappings. A GMM representing the stan-

dard speaker model is build with the normalized noisy data,

and used as a target of CMLLR in the test phase.

In the test phase, the speaker-normalized SPLICE works

as follows (Figure 4b). The input signal is converted to a se-

quence of feature vectors. Using those vectors as adaptation

data, a speaker-normalization transform is estimated via CM-

LLR with the standard speaker GMM as its target. The trans-

form is then applied to the same vectors to normalize speaker

characteristics. The most likely environment is selected us-

ing those speaker-normalized vectors, and the SPLICE map

of the selected one is used to clean them up.

The idea of feature vector normalization by CMLLR with

GMM as its target is also reported in [8]. Our method is

different from theirs in that we use CMLLR in combination

with SPLICE. Also, the way of building the standard speaker

GMM is different. They used the traditional SAT with noisy

training data to construct the GMM. However, due to the pres-

ence of noise-induced feature variation, speaker-dependent

transforms cannot be estimated robustly. On the other hand,

we estimate speaker-dependent transforms with clean data and

apply them to noisy data to avoid the interference by noise-

induced feature variation. This procedure can be said to be

a novel variant of SAT, and is particularly effective when the

training data is highly noisy.

3. EXPERIMENT

3.1. Experimental conditions

The proposed and related methods were evaluated in the Au-

rora2 experimental framework [9]. The Aurora2 is a frame-

work to evaluate the performance of speech recognition sys-

tems under noisy conditions. The task is connected digits

recognition in English. The test consists of three parts; set A

to evaluate the performance in known noise conditions, set B

in unknown noise conditions, and set C in unknown channel

conditions. See [9] for the full description of the Aurora2

framework.

The acoustic model was trained using the noisy (or multi

condition) training data. The Aurora2 reference training script

was used without modification except that the number of mix-

tures per state was increased from three to 20, and the spectral

type was changed from magnitude to power.

A CMLLR transform was defined by a block diagonal ma-

trix of (13 13 13) and a bias vector. A 512-mixture GMM

was used as a target of CMLLR. In the test, nine to 10 ut-

terances collected in a specific speaker-noise-SNR condition

were used to estimate a CMLLR transform, which was then

applied to the same utterances to normalize speaker charac-

teristics. Although some 1500 frames were used to estimate

a transform in this experiment, 300 frames or so should be

enough to reliably estimate a transform, according to our pre-

liminary experiment. For each of the 20 environments (com-

bination of four noises and five SNRs), a 256-mixture GMM

and a SPLICE mapping (i.e., 256 correction vectors) were

trained using the speaker-normalized stereo training data. The

HTK 3.4 was used for extracting feature vectors, training acous-

tic models, estimating CMLLR transforms, and decoding in

the backend.

Five other methods (Baseline, CMN, CMLLR, SPLICE

and CMN+SPLICE) were evaluated along with the proposed

method (CMLLR+SPLICE). Note that an acoustic model was

trained for each of the feature enhancers using the multi con-

dition training data processed by that enhancer.

3.2. Two ways of speaker adaptive training

A GMM representing a standard speaker is used as a target to

estimate a CMLLR speaker-normalization transform. There

are two ways to train the GMM, and their comparative per-

formance was evaluated. In the first way (denoted Conven-

tional), the speaker adaptive training using a GMM as a target

of CMLLR is carried out with the noisy data to yield a stan-

dard speaker model. In the second way (denoted Proposed),

Table 1. A comparison of the two ways of SAT.

A B C Ave

Conventional 93.58 93.10 93.44 93.36

Proposed 93.92 93.35 93.66 93.64
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the GMM is trained as described in section 2.3; the speaker-

normalization transforms are first estimated via SAT using the

clean data, the obtained transforms are applied to the noisy

data, and the normalized noisy data are used to build a stan-

dard speaker GMM.

The standard speaker model was trained in each way, and

the obtained model was plugged-in to the CMLLR speaker

normalizer. Table 1 shows the comparative performance of

the two ways. The proposed way of training achieved a slightly

better result than the conventional way in all of the three sets.

This result supports our conjecture that the speaker normal-

ization transform does not change with respect to the noise

level, and can be estimated more reliably using the clean data

than using the noisy data.

3.3. Experimental result

Table 2 shows the summary of the Aurora2 results. Note that

the CMLLR result in Table 1 is shown again for compari-

son. The baseline performance without applying any kind of

feature enhancement was 90.19%. The performance of set B

was worse than that of set A, which was caused by the mis-

match between training and test environments. Also in set

C, the performance degraded due to the channel mismatch.

By applying CMN, utterance by utterance, the performance

was significantly improved from the baseline, particularly in

set C, showing the CMN’s capability to normalize channel

variation. The CMLLR speaker normalization further im-

proved the performance. The method is more flexible than

CMN in that it can rotate, scale, or shear the space as well

as just shift it. This flexibility boosted the capability to nor-

malize speaker variation. On the other hand, SPLICE did not

improve the performance on average. Although the perfor-

mance improved in known noise environments, a significant

drop was observed in unknown ones. When the noise type is

unknown to the system, SPLICE is forced to select an envi-

ronment from 20, no matter how different the one is compared

with the current environment, and input vectors are mapped

to somewhere irrelevant as a result. Nevertheless, SPLICE

can build a new environment model on the fly by learning a

new map using a stereo data generated from the current noise.

Hence, the weakness in unknown environments can be cov-

ered to some extent. When CMN is used as a preprocessor

Table 2. Comparative performance of the feature enhancers

in the Aurora2 evaluation (word accuracy in %).

A B C Ave

Baseline 91.36 89.53 89.18 90.19

CMN 92.22 91.99 92.77 92.24

CMLLR 93.92 93.35 93.66 93.64

SPLICE 93.29 86.88 89.32 89.93

CMN+SPLICE 93.62 91.15 92.61 92.43

CMLLR+SPLICE 94.58 92.98 93.82 93.79

of SPLICE, the average word error rate was reduced by about

25% relative to the basic SPLICE. The proposed method (i.e.,

speaker-normalized SPLICE with CMLLR) achieved the best

result among all, reducing the error by about 38% relative to

the basic SPLICE, and 18% relative to the CMN+SPLICE.

4. CONCLUSION

In this paper, we proposed the speaker-normalized SPLICE

approach for enhancing features in noisy conditions. The

method is a two-stage feature enhancer; in the first stage, CM-

LLR is used to normalize speaker characteristics; in the sec-

ond, SPLICE is used to normalize the effect of noises. By the

introduction of the speaker-normalization step, feature vec-

tor variation caused by speaker changes is removed, and the

SPLICE mappings (i.e., shifts of feature vectors induced by

noises) can be learned more clearly. The proposed method

achieved a word error rate reduction of 38% relative to the

conventional SPLICE without any preprocessing, and 18%

relative to the SPLICE with CMN preprocessing.
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